OAK

Discrete Prompt Compression with Reinforcement Learning

Metadata Downloads
Abstract
Compressed prompts aid instruction-tuned language models (LMs) in overcoming context window limitations and reducing computational costs. Existing methods, which primarily based on training embeddings, face various challenges associated with interpretability, the fixed number of embedding tokens, reusability across different LMs, and inapplicability when interacting with black-box APIs. This study proposes prompt compression with reinforcement learning (PCRL), which is a discrete prompt compression method that addresses these issues. The proposed PCRL method utilizes a computationally efficient policy network that edits prompts directly. The training approach employed in the proposed PCRLs can be applied flexibly to various types of LMs, including both decoder-only and encoder-decoder architecture and it can be trained without gradient access to the LMs or labeled data. The proposed PCRL achieves an average reduction of 24.6% in terms of the token count across various instruction prompts while maintaining sufficient performance. In addition, we demonstrate that the learned policy can be transferred to larger LMs, and through a comprehensive analysis, we explore the token importance within the prompts. Authors
Author(s)
Jung, HoyounKim, Kyung-Joong
Issued Date
2024-05
Type
Article
DOI
10.1109/ACCESS.2024.3403426
URI
https://scholar.gist.ac.kr/handle/local/9588
Publisher
Institute of Electrical and Electronics Engineers Inc.
Citation
IEEE Access, v.12, pp.72578 - 72587
ISSN
2169-3536
Appears in Collections:
Department of AI Convergence > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.