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ABSTRACT Compressed prompts aid instruction-tuned language models (LMs) in overcoming context
window limitations and reducing computational costs. Existing methods, which primarily based on training
embeddings, face various challenges associated with interpretability, the fixed number of embedding tokens,
reusability across different LMs, and inapplicability when interacting with black-box APIs. This study
proposes prompt compression with reinforcement learning (PCRL), which is a discrete prompt compression
method that addresses these issues. The proposed PCRL method utilizes a computationally efficient policy
network that edits prompts directly. The training approach employed in the proposed PCRLs can be applied
flexibly to various types of LMs, including both decoder-only and encoder-decoder architecture and it can
be trained without gradient access to the LMs or labeled data. The proposed PCRL achieves an average
reduction of 24.6% in terms of the token count across various instruction prompts while maintaining
sufficient performance. In addition, we demonstrate that the learned policy can be transferred to larger LMs,
and through a comprehensive analysis, we explore the token importance within the prompts.

INDEX TERMS Large language models, Prompt compression, Reinforcement learning, Computational

efficiency, Black-box APIs.

I. INTRODUCTION

NSTRUCTION-TUNED language models (LMs) [1, 2, 3],

e.g., ChatGPT, are being used increasingly to address var-
ious natural language processing (NLP) challenges, offering
solutions through task-specific prompts for both individuals
and businesses. The design of concise prompts that contain
only essential information benefits both users and servers. For
example, Users benefit from reduced query-length dependent
API usage costs and overcoming context window limita-
tions, and servers benefit from shorter prompt designs that
reduce computational burden. Prompt compression methods
for concise, information-rich prompts are beneficial in terms
of realizing efficient LM utilization.

A widely adopted prompt compression method involves
training embeddings that encapsulate the original contexts
[4, 5, 6], using the soft prompt concept [7]. However, with
this method, the appropriate embedding token count must be
determined, its inherent properties can hinder interpretation,
it lacks cross-model reusability, and its dependency on gradi-
ent access to LMs can make it impractical for scenarios that
employ API services. An appealing alternative is compression
via discrete prompts that comprise concrete tokens from the
vocabulary. Only a few studies have investigated methods to

VOLUME 11, 2023

compress discrete prompts. One such study, The selective-
context by [8], focuses on reducing prompt length by filtering
out less informative text based on self-information from an
entropy perspective.

In this paper, we proposed the prompt compression with
reinforcement learning (PCRL) method that utilizes a discrete
prompt compression technique that incorporates the advan-
tages outlined in Table I. Drawing on techniques similar to
those used for extractive summarization tasks, the learned
policy edits prompts directly, which reduces tokens with lim-
ited contribution to the LM output (i.e., the generation LM).
To reduce the computational overhead associated with the
compression process, we designed a process that determines
the inclusion or exclusion of each token simultaneously in
a single step. In addition, the policy integrates MLP layers
with a small number of parameters into lightweight LMs (i.e.,
the policy LM), which improves computational efficiency
further.

The model is trained by a reward function that balances
both the faithfulness of the compressed prompts and their
reduced length using a policy gradient algorithm [9]. Here,
faithfulness is evaluated indirectly by measuring the similar-
ity between the output of the generation LMs when given un-
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Method Generalization  Adaptive Compression  Black-Box Applicable — Transferable b/w LMs  Interpretability
Fine Tuning X X X X X
Wingeate et al., (2022) X X X X X
Mu et al., (2023) 4 X X X X
Chevalier et al., (2023) v v X X X
PCRL (Ours) v v v v v

TABLE 1. Comparison of the proposed model with soft prompt compression methods based on selected desirable properties. Generalization represents
the characteristic that allows it to handle new prompts without requiring retraining. A model that is capable of adaptive compression adjusts the length of
the compressed prompt according to the length of the original prompt. Black-box applicable methods can be applied in black-box API scenarios where
gradient or token probability are not provided. Our model demonstrates transferability between various LMs by using discrete tokens rather than

embeddings (Section IV-C).

compressed and compressed prompts. Importantly, this Rein-
forcement Learning (RL) approach allows the training of the
policy without needing the gradients of the generation LMs,
as it learns through trial and error, thus ensuring effective
learning even without explicit data labels. In addition, this en-
ables consistent training regardless of whether the generation
LM has a decoder-only or encoder-decoder architecture.

The proposed model achieved an average compression ra-
tio of 24.6% in experiments conducted on various instruction
sets while maintaining output quality that is similar to that of
the original prompts. In addition, we analyzed the importance
of tokens for the response and the results provide insights that
could be used to further refine and optimize the compression
technique. Furthermore, we found that the policy learned
from a smaller model can potentially be transferred to larger
and more powerful generation LMs.

The primary contributions of this study are summarized as
follows:

o We propose the discrete prompt compression concept

and describe the problem using RL.

« We demonstrate the superior performance of the pro-
posed PCRL method compared to existing methods and
the transferability of the learned policy to more practical
LMs.

« We explore the token characteristics within the prompt
that yield minimal contribution to the LM output.

Il. RELATED WORK

A. DISCRETE PROMPT OPTIMIZATION

Prompting has been widely used as a general method for NLP
tasks [3, 10, 11], and corresponding research into prompt
optimization in LMs has emerged as a significant area of
study. For example, prompt tuning optimizes continuous em-
beddings using gradient descent [7, 12]. In contrast, discrete
prompt optimization searches for tokens or exemplars to con-
struct effective prompts. A previous study Shin et al. [13]
utilized gradient information to search for the best performing
prompt, and another study [14] proposed an edit-based search
method that is applicable to gradient-free scenarios. In addi-
tion, Zhou et al. [15] leveraged LMs to generate and evaluate
prompts. Deng et al. [16] introduced an RL-based framework
to generate optimal prompts and improve LM performance.
Zhang et al. [17] integrated various prompt components, in-
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cluding exemplars and the verbalizer, which were optimized
using RL. These studies have made remarkable progress;
however, they focused on enhancing performance, largely
neglecting the prompt compression perspective.

B. PROMPT COMPRESSION

In the prompt compression research field, the majority of
the studies adopt a soft prompts concept. Early studies set
distillation objectives to minimize the discrepancies between
the generative distributions produced by LMs using orig-
inal prompts and those produced using soft prompts [4].
However, this technique requires re-optimization for each
new prompt, thereby lacking the capability to generate com-
pressed prompts for different prompts. Mu et al. [5] de-
composed a prompt into tasks and inputs, which effectively
reduced the task component to a few gist tokens. The pro-
posed method differs in that it attempts to compress the
entire prompt. Chevalier et al. [6] focused on overcoming
limited context windows using compressed summary vectors
from long contexts. Similar to our work, Li [8] removed
less informative content from discrete prompts by calculating
self-information based on the likelihood of tokens. However,
this method is dependent on having access to probability
information, which is unfeasible in black-box API scenarios.

C. UNSUPERVISED SUMMARIZATION

A different perspective of the proposed study involves un-
supervised summarization to create more concise prompts.
Specifically, we select an extractive summarization over ab-
stractive methods to reduce the search space and maintain
closer context with the original prompt. Zhou and Rush [18]
employed a pretrained model with the beam search technique
to identify tokens that maximize both fluency and similarity.
Schumann et al. [19] used a greedy hill-climbing search
strategy to optimize objectives for fluency and similarity. In
addition, Narayan et al. [20] implemented extractive sum-
marization through RL using ROUGE [21] scores in the
design of the reward function. Similarly, Ghalandari et al. [22]
trained an extractive policy that receives rewards based on
fluency, similarity, and length metrics. Most of these studies
summarized content based on the source text; however, the
proposed method is distinguished by its use of responses
generated from the LMs through prompts.
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lIl. PROMPT COMPRESSION WITH RL

A. TASK

Here, given a prompt p = {x1, xa, ..., X, }, comprising tokens
x;, a compressed prompt p’ is defined as a shorter sequence
of tokens. When input to LMs, it produces a generative
distribution Ppy(-|p’) that is similar to that obtained by the
original prompt Py (-|p). The output sequence of tokens
is denoted y, and the function § quantifies the divergence
between the distributions. The compressed prompt should
satisfy the following condition.

S(Pm(ylp), PLm(ylp)) <€, [p'| < Ip (1)

The primary objective of this study is to learn a policy
7 that compresses a given original prompt p as much as
possible. When applied to a prompt p, this policy generates
a shorter prompt p™ = m(p) that retains the semantic infor-
mation of p. We cast this problem as a sequence labeling task
to select salient tokens from the prompt. In this context, an
include/exclude label is assigned for each token x;, thereby
creating a compressed prompt that encompasses only the
required tokens. The optimization objective of this policy
combines two terms, i.e., faithfulness and the compression
ratio, using the balance term /.

" = argmin[6(Puv(ylp), Pu(Ip™)) + B (IP"/lpl) |
2

Typically, common methods that use the soft prompt fix the
token length of the compressed prompt as a hyperparameter
and minimize the divergence ¢ as a loss through gradient
descent. However, challenges arise when practitioners inter-
act with LMs via an API or when computing the gradients
becomes excessively costly. This frequently makes it unfea-
sible to access the probability distribution of output tokens
Piym(+|p) and the gradient information directly. To overcome
this specific challenge, we reformulate the problem using
RL, by leveraging optimization without the LM gradient. In
addition, we replace the measure of divergence between the
output distributions Py (-|p) with a measure of similarity of
the output sequences y = LM (p). In addition, we adopt the
ROUGE score to compute similarity in the proposed model.

B. TRAINING PROCEDURE

The construction of the compressed prompts is formulated as
a discrete prompt optimization problem, which we address
using RL. To accomplish this, we set up the following Markov
decision process (MDP). Given an initial state, i.e., tokenized
prompt p = {x1,x2,...,x,}, the policy 7 outputs binary
labels as actions a = {a1,az,...,a,} € {0,1}" for each
token. Here, each label a; determines whether the correspond-
ing token is included or excluded. Following the transition to
a compressed prompt p”, a reward R(p, a) is received. This
reward is calculated from the output sequences of the LMs
and the reduced prompt length. Note that the MDP terminates
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FIGURE 1. Overview of the PCRL training framework. A prompt is sampled
from the prompt pool and edited by the compression policy. The outputs
of the LM are then evaluated by assessing the similarity of responses to
both the original and modified prompts, as well as by measuring the ratio
of lengths between the original and edited prompts. The overall score,
which combines these evaluations, is then used to update the policy.
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in a single step, thus, our environment resembles a contextual
multi-armed bandit [23]. In contrast to the traditional bandit
problem, in which only a single action and its corresponding
reward are available in each episode, our algorithm allows the
policy to obtain rewards with multiple possible actions.

Fig. 1 illustrated the training procedure of the proposed
method. First, a prompt p is sampled randomly from the
prompt pool, which is a dataset of prompts that do not require
labels. The sampled prompt is processed through the com-
pression policy 7y to produce a compressed prompt p”. The
original and compressed prompts are then input to the LMs,
yielding two sets of output responses. Then the reward is cal-
culated based on the measured similarity and the compression
ratio of p™. To balance accuracy and time efficiency during
the generation process, we limit the number of generated
tokens to 7. Note that a longer and more time consuming
generation process could offer more accurate understanding
of the similarity, However, empirical findings indicate that
even a partial generation is sufficient.

The compression policy mp (parameterized by ) is trained
using the policy gradient algorithm. This process ensures that,
given an input prompt p, the policy will yield a probability
distribution of binary actions a; for each token. Here, the
objective is to identify the parameter 6 that causes 7y (a|p)
to assign a high preservation probability to tokens that con-
vey the essence of the prompts, which is accomplished by
maximizing the following objective function in relation to the
parameters 6.

](9) = Ea~7Te [R(p, a)] 3)

where, 7y stands for g (a|p). The policy gradient algorithm
possesses the following gradient:
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VoJ (0) = E [R(p,a) Vg log g(alp)] “)

Note that we subtract a baseline from the reward to fa-
cilitate effective learning by adopting Self-critical sequence
training (SCST) [24]. For this training algorithm, R(p, a) is
the general reward obtained by executing the action a sam-
pled from the current policy 7 (:|p). Conversely, the baseline
R(p,a) is derived by executing the action a with the highest
probability in the current policy.

Vol (0) = E [(R(p,a) — R(p,a)) Vg log mo(alp)]  (5)

In simpler terms, this implies that an action is considered
preferable if it offers a reward that is greater than that pre-
dicted by the current policy. Both the ROUGE scores and
compression ratio, which are used as reward functions, are
positive; thus, it is necessary to penalize actions that yield
relatively lower rewards. Incorporating the baseline helps us
deal with this concern effectively.

A limitation of SCST occurs when the two sequences
achieve comparable rewards R(p,a) ~ R(p, a), i.e., the loss
approaches zero, and the model has little to learn, thereby
wasting a training sample [25]. Thus, we enhance the learning
process by sampling k actions from the current policy for
the same prompts and calculating the average rewards. In
addition, to reduce instances where the loss is near zero, we
implement an entropy term to the loss, which increases the
probability of sampling diverse actions [26]. We then train
the model by minimizing the following loss function.

L(0) = (R(p,a) — R(p, a)) log mp(alp) + aH(x(-|[p)) (6)

Here, the temperature parameter o determines the signifi-
cance of the entropy term.

C. MODEL ARCHITECTURE

Fig. 2 shows the architecture of the policy network 7y. Here,
We attach binary classification MLP layers to a frozen pre-
trained policy LM, which is used to extract the contextual
embeddings of the tokens. A primary motivation behind com-
pressing prompts is the need to reduce computational costs,
leading us to favor efficient, smaller-scale backbone models,
e.g., DistilBERT [27]. During training, only the parameters
in the attached simple MLP layers are updated. We use ac-
tion masks to prevent the policy from excluding statement
tokens (e.g., “Instruction: " and “Input: ") to ensure that
the compression ratio reflects the actual reduction of the
prompt rather than simply removing these statement tokens.
In addition, the policy LM does not necessarily have to be the
same as the generation LM for which we optimize the prompt.

D. REWARD DESIGN

Note that the reward function must balance two potentially
conflicting terms, i.e., faithfulness and reduced length. To ac-
count for faithfulness, we define a term based on the ROUGE-
L score of two output token sequences generated from the
original prompt p and the compressed prompt p™.

4
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FIGURE 2. The policy network of PCRL. When a tokenized prompt is
inputted, the network outputs an include/exclude probability for each
token. Tokens within a statement prompt are always preserved by
masking out the exclude action.

Ry = ROUGE-L(LM (p), LM (p")) ™)

The ROUGE-L score considers sentence-level structural sim-
ilarity; thus it is suitable as a faithfulness term. To reflect the
reduced length, we use the compression ratio, which is the
proportion of the reduced token count to the original token
count in the prompts. The final reward is given as follows.

R(p.q) = {1 pI/p] iRy > 7 ®)
- else

If the ROUGE-L score exceeds a certain threshold 7, the

model receives the compression ratio as the reward; however,

if the score does not exceed threshold fau, the model receives

a penalty .

A key difference between the proposed method and typical
RL-based summarization [22, 28] is that we do not consider
grammatical correctness. Recent studies [14, 16, 29] have
suggested that LMs leveraging prompts do not necessarily ad-
here to human language patterns. Interestingly, prompts that
yield high performance tend to be gibberish without a clear
human-understandable meaning. Thus, we do not incorporate
grammatical fluency into the reward function. In fact, this
aspect facilitates the potential to acquire shorter prompts.

IV. EXPERIMENTS

Through a series of experiments, we demonstrate that the
proposed PCRL method compresses prompts successfully
regardless of the type of the generation LMs. In these exper-
iment, we fine-tuned the LMs using a diverse set of instruc-
tion data to mimic off-the-shelf instruction-tuned LMs. We
then evaluated the performance of the compressed prompts
obtained by the PCRL method on a validation instruction
set. In addition, the experimental results demonstrate that the
transferability of the compression policy across LMs allows
us to learn from smaller models in a cost-effective manner and
apply it to larger, more powerful models.
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Seen Unseen Human
ROUGE-L  ChatGPT % Cr ROUGE-L  ChatGPT % Cr ROUGE-L  ChatGPT % Cr
GPT2-XL

Original 54.5 (100) 50.0 (100) 0.0  44.5(100) 50.0 (100) 0.0 23.2 (100) 50.0 (100) 0.0
w/o Stopwords 38.0(69.6) 36.6(73.2) 339 35.1(79.0)0 38.6(77.2) 309 18.0(77.6) 40.2(80.4) 345
Selective Context  46.4 (85.0) 41.1(82.2) 219 40.9(919) 425(85.0) 224 20.1(86.9) 458(91.6) 21.6
PCRL (Ours) 51.0(93.6) 47.3(94.6) 21.8 423(95.1) 49.1(98.2) 232 20.5(88.6) 47.1(943) 243

FLAN-T5-XL
Original 44.3 (100) 50.0 (100) 0.0  43.7(100) 50.0 (100) 0.0 23.3 (100) 50.0 (100) 0.0
w/o Stopwords 34.8(78.5) 40.7(81.4) 326 36.3(83.0) 40.0(80.0)0 29.7 19.4(83.2) 39.7(794) 328
Selective Context  37.3(84.2) 38.6(77.2) 249 38.1(87.2) 388(77.6) 25.1 19.8(84.5) 36.1(72.2) 254
PCRL (Ours) 41.1(929) 45.0(90.0) 274 40.6(92.8) 43.6(87.2) 251 21.1(90.5) 419(83.8) 276

TABLE 2. ROUGE-L and ChatGPT performance of PCRL for instruction prompts. Values in parentheses indicate normalized scores to the Original.

A. INSTRUCTION PROMPTS

1) Datasets

To construct LMs that can be generalized across various in-
structions, we used the Alpaca+ dataset, following a previous
study [5]. The Alpaca+ dataset consists of a Self-instruct [30]
and a Stanford Alpaca [31] dataset. Specifically, it comprises
(tasks, input, answer) tuples, with a total of 104,664 unique
tasks, and it is effective for experiments involving a diverse
set of instructions. The validation set in the Alpaca+ dataset
is categorized into three distinct sets. The first set, Seen
prompts, contains 1,000 prompts in which the tasks are al-
ready seen in the training set; however, the inputs are new. The
second set, Unseen prompts, includes 1,000 prompts where
both the tasks and the inputs have never been encountered
in the training set. The final set includes 252 handcrafted
human prompts, thereby representing a substantial out-of-
distribution (OOD) challenge.

2) Models

In these experiments, we employed two different architec-
tures to demonstrate that the proposed method can be applied
to various text generation LMs. The first LM is GPT2-XL
[32], which is a decoder-only model, and the second LM
is FLAN-T5-XL [33], which is an encoder-decoder model.
These LMs include 1.5B and 3.0B parameters, respectively.
Each of these models was fine-tuned on the Alpaca+ dataset
with three epochs for GPT2-XL and one epoch for FLAN-
T5-XL to create instruction-tuned models for inference. The
performance achieved with noncompressed prompts, which
are used as the upper-bound baseline original, is the standard
for evaluating our models.

Several approaches were considered for comparison. in-
cluding the basic technique of eliminating less informative
tokens (specifically stop words) using the NLTK stop word
list [34]. In addition, we compared the proposed model’s
effectiveness with that of the selective-context method [8]. To
ensure fairness in the comparison, we configured the model to
perform compression at the token level with similar compres-
sion ratios and maintained the inclusion of statement tokens.
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We evaluated both the foundation model and the instruction-
tuned model to calculate self-information, and we report the
best obtained results.

3) Evaluation

The evaluation metrics used to assess model performance
included ROUGE-L, ChatGPT, and compression metrics.
ROUGE-L has been used in instruction fine-tuning [1, 35]
and prompt compression [5] studies. ROUGE-L calculates
the similarity between the ground truth (Gt) and the generated
response (Gen) by measuring F1 score of the longest common
subsequence (LCS). This similarity is quantified using the
following formulas:

Prcs = LCS(Gen, Gt) / |Gen]| )
Rics = LCS(Gen, Gt) / |G| (10)
2 X Pres X Rics
ROUGE-L(Gen, Gt) = ——- £c8 * {Cs 1
( ) Prcs + Rics an

It is important to distinguish this usage from that in the
reward calculation. The reward function employs ROUGE-L
to calculate the score by comparing the sentences generated
from the original and compressed prompts; however, during
evaluation, it represents the similarity to the true reference
in the dataset. GPT2-XL tends to continue generating tokens
until it reaches the maximum token limit; thus, we generate
tokens up to the number of tokens in the reference sentences
for both models.

The compression ratio (Cr) is the reduced token count in the
compressed prompt divided by the token count in the original
prompt.

Cr=1-1[p"[/ |p| (12)

To ensure fairness, we calculate Cr by excluding the number
of statement tokens. This ratio signifies the model’s effec-
tiveness in terms of condensing the original prompt. Due
to potential differences between the tokenizers used by the
policy and the generation LMs, we employ the decoded text
as a bridge. Here, tokens are edited on the basis of the policy
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GPT2-XL
ChatGPT %  Cr

FLAN-T5-XL
ChatGPT %  Cr

Generation
Model (Size)

insf?&gf?ﬁ) 437 (£2.0) 220 422(£2.1) 269
leaLtal?f ?72]'3) 473 (£1.8) 217 458 (£1.9) 265
§§i§ﬁ§; 448 (42.3) 222 427 (+1.5) 268

G_TPEQS(;S 498 (£1.1) 218 47.7(k1.1) 270

TABLE 3. Transferability of the proposed PCRL method across different
LMs, evaluated using the ChatGPT metric. Values in parentheses indicate
the 95% confidence interval.

LM’s tokenizer, and the Cr is calculated using the generation
LM’s tokenizer.

The ChatGPT metric represents the ratio by which Chat-
GPT selects the better response between two options for a
given task. Here, the objects of comparison are the responses
to our model’s compressed prompt and the original prompt.

#LM(p™) selected as better than LM(p)

ChatGPT =
4 # Comparisons

13)

ChatGPT metric can be used as a supplement because it can
consider more semantic elements than the ROUGE-L metric.
If the compressed prompt is similar in meaning to the original
prompt, a result approximating 50% is expected. This metric
is considerably faster and more cost-effective than human
evaluation; however, it exhibits nearly the same performance
as human annotators in instruction-following tasks [5]. In
addition, The near-human performance of ChatGPT in text
annotation and evaluation [36, 37, 38], lends credibility to this
measure. The prompt given to ChatGPT follows that reported
in the literature [5].

4) Results

The experimental results for the instruction-following tasks
on the entire validation set are shown in Table 2. As can
be seen, the proposed model outperformed the compared
methods on all validation sets. For the GPT2-XL model, our
compression policy achieved performance similar to that of
the original prompts’ ROUGE-L scores and the ChatGPT
metrics across most validation sets. This was achieved while
also reducing the number of input tokens by an average of
22.7% for GPT2-XL and 26.4% for FLAN-T5-XL. In the
human split set, both the ROUGE-L scores and the ChatGPT
metrics exhibited lower overall values. In this split, it appears
that the OOD challenge makes it difficult for the policy to
compress considering the context.

B. TRANSFERRING PROMPTS ACROSS LMS

A unique advantage of discrete prompts over soft prompts
is that they are transferrable across models because of the
common text space rather than the model-specific latent space

6

[16]. Leveraging this advantage, we demonstrate the prac-
ticality of the proposed model by experimenting with its
application to larger, more powerful generation LMs. The
results of this experiment effectively prove that the proposed
method’s use of discrete prompts enables higher flexibility
and robustness, thereby making it a valuable tool in various
scenarios and across different models.

1) Experiment

We evaluated the transfer ability of the proposed method
using 2,252 data points, which is the sum of all val-
idation sets used in the previous experiment. Here, we
considered four models, i.e., LLaMa2 [39], which is a
decoder-only model with 7B parameters, Falcon [40],
which is another decoder-only model with 7B parame-
ters, FLAN-T5-XXL [33], which is an encoder-decoder
architecture with 11B parameters and GPT-3.5 model,
which is the LM used in ChatGPT. Specifically, we used
the Llama—-2-7B-chat-hf, Falcon-7B-instruct,
FLAN-T5-XXL and gpt-3.5-turbo models without
fine-tuning. In line with our previous experiments, we com-
pared the output of the original and compressed prompts
using the ChatGPT metric, which considers the meaning
of the sentence more thoroughly than the ROUGE scores.
This allowed us to effectively assess how well the proposed
method performs across different models, by showcasing its
flexibility and potential for adaptation to various scenarios.

2) Results

Table 3 shows the transfer results for compression policies
applied to various large LMs. These policies were trained
using GPT2-XL and FLAN-T5-XL as the generation LMs.
As can be seen, the difference in the compression ratio due to
variations in the tokenizers between the generation LMs was
minimal. As aresult, the Cr value was similar to that obtained
in the previous experiments.

Surprisingly, we found that the ChatGPT evaluation is
generally consistent with the results of the original generation
models, and in some cases, it even surpasses them. Specif-
ically, LLaMa2 demonstrated a successful transfer with a
win rate of 47.3% in the GPT2-XL model and 45.8% in the
FLAN-T5-XL model. In addition, the performance of GPT-
3.5 surpassed the result obtained by models used in training,
achieving 49.8% in the GPT2-XL model and 47.7% in the
FLAN-T5-XL model.

The level of stability emphasizes the viability of the pro-
posed method, indicating its effectiveness even with updates
to the API version or when an entirely different LM is used.
These findings underline the robustness and flexibility of
the proposed method, suggesting that it holds considerable
promise for practical applications.

The results from LLaMa2 and GPT-3.5 suggest the possi-
bility that the more powerful the model, the less susceptible
it is to the influence of redundant tokens, thereby indicating
a higher potential for compression. In addition, the perfor-
mance of the FLAN-T5-XXL model lagged behind the other
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Freq Removal Token Freq Removal

Rank Ratio Rank Ratio
ribe 102 99.97 mine 732 91.54

Token

ify 61 99.96 ated 535 90.60
. 3 98.70 me 40 89.80
a 10 97.86 of 11 89.23
ize 266 97.40 them 138 85.81
" 588 95.65 an 23 85.72

ate 74 95.45 rite 311 85.01
ose 521 94.38 out 62 84.87
be 49 93.87 the 5 83.89
ze 623 93.63 also 406 80.32

TABLE 4. Top 20 tokens by removal ratios among the 1,000 most frequent
tokens.

models, despite employing the same training procedure and
tokenizer as the FLAN-T5-XL model. This variation may
stem from the fine-tuning differences on the Alpaca+ dataset,
causing a deviation from the performance observed with the
original FLAN-T5-XL model.

C. ANALYSIS

We applied the proposed model to the Alpaca+ training set,
which comprises a total of 4.47M tokens, to identify the
patterns of the excluded tokens. This analysis focused on the
top 1,000 tokens based on appearance frequency from a total
of 25,670 different tokens in the dataset. Table 4 shows the
results of the top 20 tokens with the highest removal ratio (Re-
moval Ratio) with their rank in terms of appearance frequency
(Freq Rank). Here, the Removal Ratio value was calculated
by dividing the number of times a token was removed by the
number of times it appeared. The tokenization process was
performed by the same tokenizer used in the policy LM.

When analyzing the edited prompts, we found that the
categories of the eliminated tokens primarily belong to three
main groups, i.e., stop words, punctuation, and endings. Ta-
ble 4 includes several stop words, e.g., articles ‘a’ and ‘the’
and certain prepositions. Aligning with common sense, the
indefinite article ‘a’ has a much higher ratio of being removed
than the definite article ‘the’ which refers to specific things.
In addition, punctuation marks (‘. and ‘) were deleted
frequently. Endings, e.g., ‘ify’ in ‘Identify’ and ‘ribe’ in
‘Describe’ were removed at high ratios.

The following examples show actual compressed prompts,
with the content inside parentheses having been removed by
the compression policy. Despite these removals, the edited
prompts remain interpretable. The following example dis-
plays most of the removed word belongs to stopwords, punc-
tuation, and endings.

ANRURY

Instruction: Ident (ify) (the) odd one
(out) (.)
Input: Twitter(,)

Output:

ANRURY

Instagram(,) Telegram

VOLUME 11, 2023

Even beyond the categories mentioned above, other words
may be removed if the sentence still retains its meaning,
however, elements in the input are removed infrequently.

ARAURY

Instruction: Write a story (that) begins
(with) (the) (following) sentence.

Input: She opened the door to find (a)
tall figure cloaked in shadows(.)

Output:

This is likely because many tasks have results that change
even with slight variations in the input. Additional tables and
examples are given in Appendix Section C.

V. CONCLUSION

This paper has proposed the PCRL method, which is a prompt
compression policy technique that utilizes RL. By reducing
the number of tokens in the input prompt sent to the LMs, we
have overcome the limitations related to the context window,
thereby reducing both inference time and API usage costs.
The proposed model is trained using only a generation LM
without the need for labeled data, and it requires only a small
number of MLP layers within a frozen LM, thereby making
it parameter efficient. Despite being trained on a smaller
model, we have demonstrated the potential for transferring
the proposed method to larger, more practical models. In
addition, through further analysis, we have provided a deeper
understanding of the individual tokens in the prompts that are
input to the LM.

VI. LIMITATIONS

To reduce inference costs while training the proposed PCRL,
we fine-tuned LMs (i.e., the GPT2-XL and FLAN-T5-XL
models) on instruction data and used them as the genera-
tion LMs. If off-the-shelf models that achieve instruction-
following performance without fine-tuning processes could
be used, a more practical compression policy and more con-
vincing results would have been obtained.

A limitation of the proposed method lies in the use of the
extractive compression method. The consideration of prompt
meanings and sentence paraphrasing is expected to further
reduce the number of tokens, and exploring this issue will be
the focus of future work.

Additionally, our method holds the potential risk associated
with editing the original prompts. Specifically, in cases where
the original sentence must be directly referenced for rewrit-
ing, there could be erroneous outputs, and if the compressed
prompt omits crucial information, it may trigger hallucina-
tions. Moreover, the LM used in policy training also has a lim-
ited context length, which may restrict its use in compressing
longer sentences.

Another limitation is related to the reward design, where
the use of the ROUGE score as a faithfulness term has cer-
tain constraints. If the feasible responses in the probability
space of the LM’s response do not share similar words, a
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well-executed response may not receive a high reward. For
example, if the task involves inventing a new game, and the
compressed prompt suggests a variation of hopscotch, and
the original prompt suggests a card game, both would have
been well-executed. However, the faithful term value would
be close to zero. In the future, this limitation may be addressed
by implementing a reward design that considers semantics,
e.g., a human preference function.

APPENDIX A IMPLEMENTATION DETAIL

We trained the models using four NVIDIA Tesla V100 GPUs.
The training time was approximately 10h for the GPT2-XL
model and approximately 24 hours for the FLAN-T5-XL
model. During the training process, we limited the maximum
length of the input sequence for the policy LM to 128 tokens;
however, for evaluation, we increased the maximum length to
512 tokens for all models. Despite this significant difference
in maximum lengths between the training and evaluation
phases, the generalizability of the proposed PCRL remained
stable and did not decline significantly. For the ChatGPT
evaluation, we employed the gpt -3 .5-turbo API for the
period Nov 28 and Dec 6, 2023. Details about the hyperpa-
rameters used for the PCRL model are also provided.

HyperParameters
Policy LM DistilRoberta
Hidden Layers 2
Layer Width 4,096
Learning Rate 3e-5

4,000 (GPT2-XL)

Training steps 3.000 (FLAN-T5)

Batch size 32

T (max new token for training) 30

« (entropy coef) 0.001
A (penalty) 0.01
7 (threshold) 0.9

k (scst) 4

TABLE 5. Hyperparameters used for PCRL.

HyperParameters
Learning Rate 5e-5
. . 3 (GPT2-XL)
Num train epochs | (FLAN-TS)
Batch size 8
Optimizer AdamW

TABLE 6. Hyperparameters used for Instruction-Tuning.

APPENDIX B PROMPTS SETTINGS

The Alpaca+ dataset consists of three features: instruction, in-
put, and output. For every sample, if the text corresponding to
each feature is referred to as { instruction}, {input},
{output}, simple statements like the following are used.
The prompt settings for all tasks, including evaluation and
training, are the same.

\ \ \

Instruction: {instruction}
Input: {input}

Output:

{output}

\ \ \

APPENDIX C ADDITIONAL RESULTS
Additional results from Section 4 are included here.

Fre Removal Fre Removal
Token RanE Ratio Token Ran(l]< Ratio
ribe 102 99.97 are 28 79.91
ify 61 99.96 to 13 77.67
. 3 98.70 ). 230 76.46
a 10 97.86 ategor 799 72.05
ize 266 97.40 ve 834 71.76
. 588 95.65 R/ 387 71.51
ate 74 95.45 do 77 70.61
ose 521 94.38 late 419 69.34
be 49 93.87 does 210 64.02
ze 623 93.63 another 318 62.49
mine 732 91.54 for 20 60.02
ated 535 90.60 at 82 59.68
me 40 89.80 would 86 54.82
of 11 89.23 they 142 53.57
them 138 85.81 down 268 52.40
an 23 85.73 these 159 52.13
rite 311 85.01 up 116 51.73
out 62 84.87 that 21 51.57
the 5 83.89 st 839 51.40
also 406 80.32 it 26 50.45

TABLE 7. Top 40 tokens by removal probability among the 1,000 most
frequent tokens.

Fre Removal Freq Removal
Token Ranﬁ Ratio Token Rank Ratio
Create 81 0.000 (space) 4 0.004
Explain 97 0.000 list 57 0.004
sentence 33 0.000 your 41 0.005
words 63 0.000 following 29 0.006
numbers 94 0.000 or 24 0.006
Gener 88 0.000 each 89 0.007
3 46 0.000 new 71 0.007
5 66 0.000 which 95 0.010
whether 79 0.000 Sent 72 0.011
Given 47 0.000 Tell 100 0.014
What 56 0.000 all 75 0.014
article 84 0.001 ence 69 0.015
how 55 0.001 should 90 0.016
why 93 0.001 my 87 0.023
word 64 0.002 1 22 0.023
number 73 0.002 i 85 0.030
Find 59 0.002 not 44 0.040
text 96 0.003 about 39 0.045
given 37 0.003 " 17 0.060
was 67 0.004 4 78 0.061

TABLE 8. Bottom 40 tokens by removal ratios among the 100 most
frequent tokens.
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FIGURE 3. Experimental results for the instruction prompts (Section 4.1). We performed five experiments on each validation set using various random

seeds and computed the evaluation metrics. Error bars on orange bars indicate 95% confidence intervals.

Prompt

Compression ratio
Full instruction response

Compressed instruction response

Instruction: What is your opinion of product x(?) (give) reasons( for) your answer(.)
Input: Tesla Model S

Output:

19.04 (5/21)

I think Tesla Model S is a great car. It has a lot of features that make it stand

out from other cars. For example, the Aut

I think the Tesla Model S is a great car. It has a lot of features that make it

stand out from other cars, and it’s very affordable.

Prompt

Compression Ratio
Full instruction response

Compressed instruction response

Instruction: Analy(ze)( the) tone( of)( the) following sentences.

Input: I am so upset with you right now

Output:

25.0 (4/16)

The tone of the sentence is angry and frustrated. It conveys a feeling of hurt and
frustration. The speaker is clearly angry and wants to express their

Negative tone. The speaker is expressing their feelings of anger and frustration.
I am so upset with you right now I am so upset with you right now

Prompt

Compression Ratio
Full instruction response

Compressed instruction response

Instruction: Rewrite( the) given text and correct grammar, spelling, and punctuation
errors(.)

Input: If you’d told me year ago that today I would finish a marathon, I would of
laughed(.) Your support had a huge affect on me!

Output:

7.32(3/41)

If you had told me a year ago that today I would finish a marathon, I would have
laughed. Your support had a huge effect on me! I am so grateful for your
encouragement and support. It has made all the difference. Thank you!

If you had told me a year ago that today I would finish a marathon, I would have
laughed. Your support had a huge effect on me! I am so grateful for your
encouragement and support. It has made all the difference. Thank you!

Prompt

Compression Ratio
Full instruction response

Compressed instruction response

Instruction: Edit( the) following sentence( to) make( it) more concise(.)
Input: He ran to (the) bus stop in order to catch (the) bus that was due (to) arrive in five
minutes(.)

Output:

25.81(8/31)

He ran to the bus stop in order to catch the bus that would arrive in five
minutes. (5 minutes)

He ran to the bus stop in order to catch the bus that was due to arrive
in five minutes.

TABLE 9. Additional examples of compressed prompts from GPT2-XL. Any text within parentheses indicates tokens that were excluded. The ‘Full
Instruction Response’ corresponds to the answer given before compression, while the ‘Compressed Instruction Response’ refers to the answer following

compression
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