OAK

Linear RGB-D SLAM for Structured Environments

Metadata Downloads
Abstract
We propose a new linear RGB-D simultaneous localization and mapping (SLAM) formulation by utilizing planar features of the structured environments. The key idea is to understand a given structured scene and exploit its structural regularities such as the Manhattan world. This understanding allows us to decouple the camera rotation by tracking structural regularities, which makes SLAM problems free from being highly nonlinear. Additionally, it provides a simple yet effective cue for representing planar features, which leads to a linear SLAM formulation. Given an accurate camera rotation, we jointly estimate the camera translation and planar landmarks in the global planar map using a linear Kalman filter. Our linear SLAM method, called L-SLAM, can understand not only the Manhattan world but the more general scenario of the Atlanta world, which consists of a vertical direction and a set of horizontal directions orthogonal to the vertical direction. To this end, we introduce a novel tracking-by-detection scheme that infers the underlying scene structure by Atlanta representation. With efficient Atlanta representation, we formulate a unified linear SLAM framework for structured environments. We evaluate L-SLAM on a synthetic dataset and RGB-D benchmarks, demonstrating comparable performance to other state-of-the-art SLAM methods without using expensive nonlinear optimization. We assess the accuracy of L-SLAM on a practical application of augmented reality.
Author(s)
Joo KyungdonKim PyojinHebert MartialKweon In SoKim Hyoun Jin
Issued Date
2022-11
Type
Article
DOI
10.1109/TPAMI.2021.3106820
URI
https://scholar.gist.ac.kr/handle/local/8648
Publisher
Institute of Electrical and Electronics Engineers
Citation
IEEE Transactions on Pattern Analysis and Machine Intelligence, v.44, no.11, pp.8403 - 8419
ISSN
0162-8828
Appears in Collections:
Department of Mechanical and Robotics Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.