OAK

A Set of Control Points Conditioned Pedestrian Trajectory Prediction

Metadata Downloads
Abstract
Predicting the trajectories of pedestrians in crowded conditions is an important task for applications like autonomous navigation systems. Previous studies have tackled this problem using two strategies. They (1) infer all future steps recursively, or (2) predict the potential destinations of pedestrians at once and interpolate the intermediate steps to arrive there. However, these strategies often suffer from the accumulated errors of the recursive inference, or restrictive assumptions about social relations in the intermediate path. In this paper, we present a graph convolutional network-based trajectory prediction. Firstly, we propose a control point prediction that divides the future path into three sections and infers the intermediate destinations of pedestrians to reduce the accumulated error. To do this, we construct multi-relational weighted graphs to account for their physical and complex social relations. We then introduce a trajectory refinement step based on a spatio-temporal and multi-relational graph. By considering the social interactions between neighbors, better prediction results are achievable. In experiments, the proposed network achieves state-of-the-art performance on various real-world trajectory prediction benchmarks.
Author(s)
Bae, InhwanJeon, Hae-Gon
Issued Date
2023-02-12
Type
Conference Paper
URI
https://scholar.gist.ac.kr/handle/local/21720
Publisher
THE ASSOCIATION FOR THE ADVANCEMENT OF ARTIFICIAL INTELLIGENCE
Citation
The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI)
Conference Place
US
Appears in Collections:
Department of AI Convergence > 2. Conference Papers
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.