OAK

Bio-insect and artificial robot interaction: learning mechanism and experiment

Metadata Downloads
Author(s)
Son, Ji-HwanAhn, Hyo-Sung
Type
Article
Citation
Soft Computing, v.18, no.6, pp.1127 - 1141
Issued Date
2014-06
Abstract
This paper addresses fuzzy-logic-based reinforcement learning architecture and experimental results for the interaction between an artificial robot and a living bio-insect. The main goal of this research is to drag the bio-insect towards the desired goal area without any human aid. To achieve the goal, we seek to design robot intelligence architecture such that the robot can drag the bio-insect using its own learning mechanism. The main difficulties of this research are to find an interaction mechanism between the robot and bio-insect and to design a robot intelligence architecture. In simple interaction experiment, the bio-insect does not react to stimuli such as light, vibration, or artificial robot motion. From various trials-and-error efforts, we empirically found an actuation mechanism for the interaction between the robot and bio-insect. Nevertheless, it is difficult to control the movement of the bio-insect due to its uncertain and complex behavior. For the artificial robot, we design a fuzzy-logic-based reinforcement learning architecture that helps the artificial robot learn how to control the movement of the bio-insect under uncertain and complex behavior. Here, we present the experimental results regarding the interaction between an artificial robot and a bio-insect.
Publisher
SPRINGER
ISSN
1432-7643
DOI
10.1007/s00500-013-1133-4
URI
https://scholar.gist.ac.kr/handle/local/15145
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.