Decomposition of regular hypergraphs
- Author(s)
- Choi, Jeong-Ok; West, Douglas B.
- Type
- Article
- Citation
- JOURNAL OF COMBINATORICS, v.9, no.1, pp.21 - 33
- Issued Date
- 2018-01
- Abstract
- A d-block is a 0, 1-matrix in which every row has sum d. Let Sn be the set of pairs
(k, l) such that the columns of any (k + l)-block with n rows split into a k-block and
an l-block. For n ≥ 5, we prove the general necessary condition that (k, l) ∈ Sn only
if each element of {1, . . . , n} divides k or l. We also determine Sn for n ≤ 5. Trivially,
S1 = S2 = N × N. Also S3 = {(k, l): 2 | kl}, S4 = {(k, l): 6 | kl and min{k, l} > 1},
and S5 = {(k, l): 3, 4, 5 each divide k or l, plus 11 6= min{k, l} > 7}.
- Publisher
- INT PRESS BOSTON
- ISSN
- 2156-3527
- DOI
- 10.4310/JOC.2018.v9.n1.a3
- URI
- https://scholar.gist.ac.kr/handle/local/13426
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.