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Abstract

A d-block is a 0, 1-matrix in which every row has sum d. Let Sn be the set of pairs
(k, l) such that the columns of any (k + l)-block with n rows split into a k-block and
an l-block. For n ≥ 5, we prove the general necessary condition that (k, l) ∈ Sn only
if each element of {1, . . . , n} divides k or l. We also determine Sn for n ≤ 5. Trivially,
S1 = S2 = N × N. Also S3 = {(k, l) : 2 | kl}, S4 = {(k, l) : 6 | kl and min{k, l} > 1},
and S5 = {(k, l) : 3, 4, 5 each divide k or l, plus 11 6= min{k, l} > 7}.

1 Introduction

Our problem is most simply expressed in the language of 0, 1-matrices. A block is a 0, 1-

matrix M whose rows all have the same sum; we denote the common sum by σ(M). We use

d-block to mean a block M with σ(M) = d. Given a (k + l)-block with k, l ∈ N (where N

is the set of positive integers), a (k, l)-split is a partition of the columns into two sets such

that the resulting submatrices are a k-block and an l-block. A d-block M is indecomposable

if for all (k, l) with k + l = d, there is no (k, l)-split of M .

Trivially, every (k+ l)-block with one row has a (k, l)-split. This also holds for two rows,

since columns of the forms (0, 1)T and (1, 0)T are equinumerous and can be paired. For

n ∈ N, let Sn be the set of pairs (k, l) such that every (k + l)-block with n rows admits a

(k, l)-split. Adding a row imposes additional restrictions, so Sn+1 ⊆ Sn for all n. We have

noted S1 = S2 = N×N. In this paper, we determine S3, S4, and S5, and we prove a general

necessary condition for n ≥ 5.

Splitting of d-blocks into blocks with smaller row-sums has been studied in the language

of hypergraphs. Each edge of a hypergraph is a subset of the vertex set, and distinct edges

may have the same vertex set. A hypergraph is d-regular if every vertex lies in exactly

d edges. The incidence matrix of a hypergraph is the 0,1-matrix with rows indexed by
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the vertices and columns indexed by the edges such that entry (v, e) is 1 if and only if

vertex v row belongs to edge e. Thus a hypergraph is d-regular if and only if its incidence

matrix is a d-block. A regular hypergraph H is indecomposable if has no nontrivial regular

spanning proper subhypergraph, which is just the statement that its incidence matrix is an

indecomposable d-block.

Motivated by questions in game theory (see the survey [4]), researchers studied the max-

imum possible degree of indecomposable regular hypergraphs with n vertices. That is, the

value D(n) is the maximum d such that some d-block with n rows is indecomposable. Huck-

emann and Jurkat (see [4]) proved that D(n) is finite for all n (reproved in another way by

Alon and Berman [1]), and with Shapley they proved D(n) ≤ (n + 1)(n+1)/2 (again see [4]).

As a lower bound, Shapley proved D(n) > 2n−1/(n− 1) for n > 2, improved to D(n) > 2n−3

for n > 2 by van Lint and Pollak. Alon and Vũ [2] later proved the asymptotic formula

D(n) = n(1+o(1))n/2 (they showed in fact that this formula solves three problems). Their for-

mula is close to the upper bound of Huckemann, Jurkat, and Shapley. Füredi [3] considered

the restriction of the problem to hypergraphs in which every edge has size t. Kézdy, Lehel,

and Powers [5] gave an application of the bounds on D(n) to a problem involving weighted

hypergraphs and the selection of a “consensus” vertex.

As far as we know, the exact values of D(n) are known only for 1 ≤ n ≤ 5 [4]; they

are 1, 1, 2, 3, 5, respectively. We will use these values to study Sn. Recall that Sn = N × N

when n ≤ 2. For n = 3, a bit more thought yields S3 = {(k, l) : 2 | kl}. We also prove

S4 = {(k, l) : 6 | kl and min{k, l} > 1} and S5 = {(k, l) : 3, 4, 5 each divide k or l, and

11 6= min{k, l} > 7}. Note that the condition for S4 implies that (1, l) /∈ Sn for l ∈ N

and n ≥ 4. Thus there is no nontrivial (d, n) such that every d-regular hypergraph with n

vertices has a perfect matching.

The divisibility requirement for n = 5 is the special case for n = 5 of a general necessary

condition for membership in Sn, which we develop in Section 4:

Theorem 1.1. For n ≥ 5, if (k, l) ∈ Sn, then each element of {1, . . . , n} divides k or l.

For 2 ≤ n ≤ 4, the condition is not quite necessary; changing {1, . . . , n} to {1, . . . , n−1}

yields a weaker condition that characterizes Sn in those cases. Since the result of van Lint

and Pollak cited above yields D(n) > n when n ≥ 6, while D(n) = n− 1 for 2 ≤ n ≤ 4, we

pose the following conjecture.

Conjecture 1.2. A necessary condition for (k, l) ∈ Sn is that each element of {1, . . . , D(n)}

divides k or l. If min{k, l} is sufficiently large, then this condition is also sufficient.

Our results for n ≤ 5 agree with Conjecture 1.2. SinceD(n) ≥ n for n ≥ 6, Conjecture 1.2

strengthens Theorem 1.1.

We use the known values of D(n) in proving both necessity and sufficiency of the de-

scription of Sn for n ≤ 5. Section 2 characterizes S3 and outlines our general approach to
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determining Sn; the details for n ∈ {4, 5} follow in later sections. The method could perhaps

settle Conjecture 1.2 for more values of n once the corresponding values of D(n) are known.

Although we use D(n) to determine Sn, it is worth noting that (k, l) ∈ Sn implies

D(n) < k + l. Hence m(n) > D(n), where m(n) = min{k + l : (k, l) ∈ Sn}. A referee

pointed out that, due to the divisibility requirement, Conjecture 1.2 would yield a much

larger threshold: m(n) ≥ eD(n)/2+o(D(n)).

2 General approach

To illustrate our method, we first characterize S3. An equivalent statement was proved by

André Kündgen (unpublished). When A and B are matrices with the same number of rows,

let A :B denote their concatenation, taking the union of the column sets as multisets. We

use mA to denote the concatenation of m copies of A. Also, when B is a submatrix of A

consisting of full columns, let A \ B denote the matrix obtained by deleting those columns.

We say that B is a block in M when B is a block consisting of full columns of M .

Theorem 2.1. S3 = {(k, l) : 2 | kl}

Proof. Let M1 and M2 be the 1-block and 2-block with three rows shown below. Note that

M2 is indecomposable; it contains no 1-block.

M1 =





1
1
1



 , M2 =





0 1 1
1 0 1
1 1 0





Necessity. Let M = k+l
2
M2; this is a (k + l)-block. We claim that every block in M

has even row-sum. If a block in M with odd row-sum contains a copy of each column of

M2, then deleting these three columns yields a smaller block with odd row-sum. Hence a

minimal block B among those with odd row-sum uses only copies of at most two columns of

M2. Now some row has no 0, while another row does have a 0, so B is not a block. Thus if

kl is odd, then M is a (k + l)-block with no (k, l)-split; this yields (k, l) /∈ S3.

Sufficiency. By symmetry, we may assume 2 | k. Since k ≥ 2 and l ≥ 1, we have d ≥ 3,

where d = k + l. Since D(3) = 2, every d-block M with d ≥ 3 (and three rows) decomposes

into blocks with row-sum at most 2. We therefore obtain a 2-block A in M (possibly the

concatenation of two 1-blocks). When k = 2, this completes the decomposition. To complete

a proof by induction on k, when k > 2 we combine A with a (k−2)-block from the (k−2, l)-

split that the induction hypothesis guarantees for M \ A.

The sufficiency proof that the pairs not excluded from Sn actually do belong to Sn uses

the value of D(n) and induction on k+ l. For the base case, we will need to check that when
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(k, l) is in the specified set and k + l ≤ D(n), every (k + l)-block has a (k, l)-split. When

n ≤ 5, we have D(n) ≤ n, and there is not much to check in the base case.

For the induction step, when k+ l > D(n), every (k+ l)-block M decomposes into blocks

with row-sum at most D(n). If we can always find a block B in M with σ(B) ≤ D(n) such

that reducing k or l by σ(B) yields another pair (k′, l′) in the specified set, then combining

B with one of the blocks in a (k′, l′)-split of M \B guaranteed by the induction hypothesis

completes the proof.

For the necessity of the characterization, our proofs that exclude a pair (k, l) from Sn are

implementations of the next lemma, which we implicitly used in proving Theorem 2.1. Let

[m] denote the set {1, . . . , m}, and let M0 denote a matrix with no columns, so M :M0 = M .

Definition 2.2. A positive integer q is n-robust if for all r with 0 ≤ r < q, there exist an

indecomposable q-block Mq and an indecomposable r-block Mr (both with n rows) such that

for all p ∈ N the row-sum of any block in pMq :Mr is congruent to 0 or r modulo q.

Lemma 2.3. If q is n-robust and (k, l) ∈ Sn, then q divides k or l.

Proof. Suppose that q is n-robust and does not divide k or l. Let s = ⌊k/q⌋ and i = k− sq,

and let t = ⌊l/q⌋ and j = l − tq. Choose r ∈ [q] such that r ≡ i + j mod q. Given the

resulting Mq and Mr guaranteed by the definition of n-robust, let M = (s + t)Mq :Mr or

M = (s + t + 1)Mq :Mr, depending on whether i+ j ≤ q or not. Now M is a (k + l)-block.

By the definition of n-robust, M does not contain a k-block, so (k, l) /∈ Sn.

Note that if q is n-robust, then q ≤ D(n); this motivates Conjecture 1.2. The difficulty

in applying Lemma 2.3 is finding the needed q-block and r-block (for each r) and checking

that the concatenations do not contain blocks with undesirable row-sums. The lemma does

not save any work; it only states the plan. If we supply the specified indecomposable q-block

and r-block for each prime power q up to D(n) and each r ∈ [q], then a necessary condition

for (k, l) ∈ Sn will be that each prime power up to D(n) divides k or l.

It is not known whether there is an indecomposable d-block with n rows (indecomposable

d-regular n-vertex hypergraph) whenever d < D(n). Nevertheless, our characterization of

Sn for n ≤ 5 includes exhibiting such blocks for n ≤ 5.

Recall that Sn+1 ⊆ Sn. Since (k, l) ∈ S3 requires kl to be even, it therefore follows for

n ≥ 3 that kl must be even when (k, l) ∈ Sn. For larger n we can also eliminate the pairs

containing a 1.

Definition 2.4. Let M1, M2, and M3 henceforth denote the matrices below.

M1 =









1
1
1
1









M2 =









0 1 1
1 0 1
1 1 0
1 1 0









M3 =









0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0









4



Lemma 2.5. If n ≥ 4, then no pair (k, l) with k = 1 belongs to Sn.

Proof. Since Sn+1 ⊆ Sn, it suffices to prove this for n = 4. If (k, l) ∈ S4, then kl must be

even. Thus it suffices to provide, for each even l, an (l + 1)-block containing no 1-block.

With M1,M2,M3 defined as above, let M = (l/2− 1)M2 :M3. Since M2 is a 2-block and M3

is a 3-block, M is an (l+1)-block. Since no column of M equals M1 and the sum of any two

columns has at least one 2, M contains no 1-block.

3 Matrices with four rows

When n = 4, the matrices M1,M2,M3 will play the roles of the matrices needed to apply the

necessary condition in Lemma 2.3. When we speak of a matrix having a particular “form”,

we are allowing permutations of the columns.

Lemma 3.1. For p ∈ N and 0 ≤ r < q ≤ 3, every block in pMq :Mr has the form p′Mq or

p′Mq :Mr for some p′. Consequently, if (k, l) ∈ Sn for n ≥ 4, then 3 divides k or l.

Proof. The second statement follows from the first by Lemma 2.3 and Sn+1 ⊆ Sn, since every

block of the specified form has row-sum congruent to 0 or r modulo q. For q ≤ 2 the first

statement is trivial, so assume q = 3.

Let B be a smallest block in pM3 :Mr not having the desired form. If B contains a copy

of each column in M3, then there is a smaller such block. Hence we may assume that some

column of M3 is not use in B.

For r = 0, now B has a row with no 0 and a row with 0 and is not a block.

For r = 1, by the previous case we may assume that B contains the column M1. A block

B containing M1 consists of that column and a (possibly empty) block from pM3. Hence B

has the specified form.

For r = 2, the block B must use the one column in M2 not in M3. If B contains copies

of both other columns of M2, then the case r = 0 applies. Otherwise, B has a row having

no 0 and a row that has a 0 and cannot be a block.

Theorem 3.2. (k, l) ∈ S4 if and only if 6 | kl and min{k, l} 6= 1.

Proof. By Theorem 2.1 and Sn+1 ⊆ Sn, we have 2 | kl. By Lemma 3.1, we have 3 | kl. By

Lemma 2.5, min{k, l} 6= 1. Hence the conditions are necessary.

For sufficiency, suppose that 6 | kl. By symmetry, there are two cases: either k = 3s and

l = 2t for positive integers s and t, or k = 6s with s a positive integer and l ≥ 2.

Case 1. k = 3s and l = 2t for positive integers s and t. We use induction on s+ t. Let

M be a (k + l)-block. Since D(4) = 3, every d-block with d ≥ 4 decomposes into 1-blocks,

2-blocks, and 3-blocks. If these are all 1-blocks, then M contains a k-block.
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Thus, we may assume that M contains a 3-block or a 2-block A. If A is a 3-block and

s = 1, or A is a 2-block and t = 1 (covering the base case (3, 2)), then A or its complement

is the desired k-block. Otherwise, we apply the induction hypothesis to M \A and combine

A with a (k − 3)-block or a (l − 2)-block in M \ A to obtain a k-block or an l-block in M .

Case 2. k = 6s and l ≥ 2. We use induction on l. The cases with l ∈ {2, 3, 4} appear in

Case 1 as (3 · 2s, 2 · 1), (3 · 1, 2 · 3s), and (3 · 2s, 2 · 2), respectively. For l ≥ 5, since we may

assume that any (k+ l)-block contains a 2-block or a 3-block A, we can apply the induction

hypothesis using k and l − 2 or l − 3 to M \ A.

4 A General Necessary Condition

In this section we prove that when n ≥ 5 and 1 ≤ q ≤ n, membership of (k, l) in Sn requires

that q divides k or l. This necessary condition is not sufficient. In the next section, we will

exclude additional pairs when n = 5 to obtain the complete description of S5.

Definition 4.1. For 1 ≤ i ≤ n, we define an i-block Mi(n) with n rows. For n = 5 these

are listed below; note that M3(5),M4(5),M5(5) have 4, 6, 7 columns, respectively.













1
1
1
1
1

























0 1 1
1 0 1
1 1 0
1 1 0
1 1 0

























0 1 1 1
1 0 1 1
1 1 0 1
1 1 0 1
1 1 1 0

























0 0 1 1 1 1
1 1 0 1 1 0
1 1 1 0 0 1
1 1 1 0 1 0
1 1 1 1 0 0

























0 0 1 1 1 1 1
1 1 0 0 1 1 1
1 1 1 1 0 0 1
1 1 1 1 0 1 0
1 1 1 1 1 0 0













M1(5) M2(5) M3(5) M4(5) M5(5)

For n ≥ 6, let M1(n) be the all-1 column vector, and define M2(n) by repeating the

bottom row of M2(n−1). For 3 ≤ q ≤ n, obtain Mq(n) from Mq−1(n−1) by first appending

a 1 to the end of each row and then adding an nth row in which the first q entries are 1 and

the last one or two entries are 0 (one 0 when q ≤ n− 2, two when q ∈ {n− 1, n}). Note that

Mq(n) has q+1 columns when 2 ≤ q ≤ n− 2 and q+2 columns When when q ∈ {n− 1, n}.

Graphically,

Mq(n) =











1

Mq−1(n− 1)
...
1

1 · · · 1 0











; Mq(n) =











1

Mq−1(n− 1)
...
1

1 · · · 1 0 0











for 3 ≤ q ≤ n− 2; for n− 1 ≤ q ≤ n.

Note also that for n = 5 the last column in Mq(n) is unique and is not all 1. Therefore,

inductively we obtain the same statement for all n ≥ 5; this property will be important.
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Lemma 4.2. For n, p, q ∈ N with n ≥ 5 and q ≤ n, every block in pMq(n) has the form

p′Mq(n) for some p′ with p′ ≤ p.

Proof. The statement is trivial for q = 1. For q ∈ {2, 3}, the statement of the conclusion

holds for the matrix Mq of Definition 2.4, by Lemma 3.1. Hence it also holds for pMq(n),

since the matrix Mq(n) arises from Mq by making extra copies of some row.

For q ≥ 4, we use induction on n. We begin for n = 5 by proving the statement for

q ∈ {4, 5}. First for q = 5, let B be a block in pM5(5). There are five types of columns

from M5(5); from left to right, let a, b, c, d, e denote their multiplicities in B, respectively.

Since a block must have the same number of 0s in each row, the five row constraints give

a = b = c+ d = c+ e = d+ e. These equations require a = b = 2c = 2d = 2e, so there is just

one parameter. Also, since a = b = 2c, we can view the block as having equal multiplicity

for each of the seven columns of M5(5). Hence B has the desired form.

For q = 4 and n = 5, let B be a block in pM4(5). Each column of M4(5) appears in M5(5)

except the last. Let z be the multiplicity in B of the last column of M4(5), and let a, b, c, d

be the multiplicities of the other columns of M4(5), named as in M5(5). Since each row of

B has the same number of 0s, we obtain a = b+ z = c+ d = c+ z = d+ z. These equations

require a = 2b = 2c = 2d = 2z, and we can view the block as having equal multiplicity for

each of the six columns of M4(5). Hence B has the desired form.

For the induction step, consider n ≥ 6 and 4 ≤ q ≤ n. Let B be a block in pMq(n).

Let M ′ be the matrix consisting of the first n− 1 rows of Mq(n). Let v be the last column

of Mq(n), and let z be the number of copies of v in B. Let B′ be the matrix obtained by

removing the copies of v from B and deleting the last row. Since the copies of v contributed

z to the sum of each row in B other than the last row, B′ is a block in pM ′.

Since pM ′ = pMq−1(n− 1), the induction hypothesis implies that B′ consists of p′ copies

of each column of Mq−1(n− 1), for some p′. Thus σ(B′) = p′(q − 1). Since Mq(n− 1) has q

copies of 1 in the bottom row before v, and each of those columns appears p′ times in B, we

have σ(B) = p′q. Therefore, z = p′, and B has the desired form.

Setting p = 1 in Lemma 4.2 yields the statement that Mq(n) is indecomposable.

Lemma 4.3. For p ∈ N, every block in pMq(5) : Mr(5) for 0 ≤ r < q ≤ 5 has the form

p′Mq(5) :Mr(5) or p
′Mq(5) for some p′ with p′ ≤ p. In particular, q is 5-robust for 1 ≤ q ≤ 5.

Proof. Lemma 4.2 is the case r = 0. For r = 1, since the one column of M1(5) is all 1s,

Lemma 4.2 again applies.

Consider now r > 1. Observe that every column of Mr(5) lies in Mq(5) except the last

column of Mr(5). Hence Lemma 4.2 implies that a block B in pMq(5) :Mr(5) with σ(B) not

divisible by q must use the one copy of the last column of Mr(5). Let the multiplicities of the

other columns again be a, b, c, d, e, using the notation for columns of M5(5) as in Lemma 4.2.

In considering r ∈ {2, 3, 4}, let x, y, z respectively be the multiplicity of the last column in
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Mr(5). Except for copies of that column, we count all columns used as copies of columns of

Mq(5).

We again count the 0s in each row. For each case (q, r), these counts appear below from

row 1 to row 5 under “constraints from 0s”; the five values must be equal. The equalities

allow us to compute all multiplicities in terms of c as in the next section of the table. The

final column then counts the 1s in each row of B. In each case, the row-sum is congruent to

r modulo q, and B has the desired form.

q r constraints from 0s a b c d e x y z σ(B)

3 2 a b c+1 c+1 y+1 c+1 c+1 c 0 0 1 c 0 3c+2
4 2 a b+z c+d+1 c+z+1 d+z+1 2c+1 c+1 c c 0 1 0 c 4c+2
4 3 a b+z c+d c+z d+z+1 2c−1 c c c−1 0 0 1 c−1 4c−1
5 2 a b c+d+1 c+e+1 d+e+1 2c+1 2c+1 c c c 1 0 0 5c+2
5 3 a b c+d c+e d+e+1 2c−1 2c−1 c c−1 c−1 0 1 0 5c−2
5 4 a b+1 c+d c+e+1 d+e+1 2c 2c−1 c c c−1 0 0 1 5c−1

Lemma 4.4. For p, n ∈ N with n ≥ 5, every block in pMq(5) :Mr(5) for 0 ≤ r < q ≤ n has

the form p′Mq(n) :Mr(n) or p′Mq(n) for some p′ with p′ ≤ p. Thus q is n-robust for q ≤ n.

Proof. Lemma 4.3 is the case n = 5; we use that as the basis for induction on n. For larger

n, the claim for r ≤ 1 is Lemma 4.2. Consider r ≥ 2 (and hence q > 2), and let B be a block

in pMq(n) :Mr(n), with t = σ(B).

Let r′ = max{r− 1, 2}. Arrange the columns of B by placing the copies of [1 · · · 1 0]T at

the right end. This yields the following form of B.

B =









M J

H 0 · · · 0









,

where J is an all-1 matrix. Let z be the number of columns in J . Since the last columns of

Mq(n) and Mr(n) are unique, M is a block in pMq−1(n− 1) :Mr′(n− 1), with σ(M) = t− z.

By the induction hypothesis, M consists of the columns of p′Mq−1(n − 1) :Mr′(n − 1)

or p′Mq−1(n − 1), for some p′ with 0 ≤ p′ ≤ p. Thus t − z is p′(q − 1) + r′ or p′(q − 1),

respectively.

By the uniqueness of the final columns in Mq(n) and Mr(n), each copy of Mq−1(n−1) or

Mr′(n−1) in M extends by adding the portion of H below it to become the matrix obtained

from Mq(n) or Mr(n) by deleting the final column (or that full matrix in the case of r = 2).

Thus t ∈ {p′q + r, p′q}, depending on whether Mr′(n− 1) appears in M . We conclude that

z is p′ + r− r′ or p′, respectively. Hence the final columns provide exactly what is needed to

conclude that B has the form p′Mq(n) :Mr(n) or p
′Mq(n).
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Applying Lemma 2.3, we now have the following theorem.

Theorem 4.5. For n ≥ 5, if (k, l) ∈ Sn, then q ∈ {1, . . . , n} divides k or l.

5 Matrices with five rows

In this section, we determine S5. Lemma 4.3 showed that q is 5-robust for 1 ≤ q ≤ 5.

Thus Lemma 2.3 implies that for every (k, l) ∈ S5, each of {3, 4, 5} divides k or l. Also we

have forbidden min{k, l} = 1. These conditions are not sufficient; the characterization of S5

excludes additional pairs when min{k, l} is small.

Lemma 5.1. If (k, l) ∈ S5, then 3, 4, 5 each divide k or l, plus 11 6= min{k, l} > 7.

Proof. By Lemma 4.3, the divisibility condition is necessary. Restricting to k ≥ l, in this

proof we exclude pairs of the form

{(20s, 1), (20s, 2), (20s, 3), (15s, 4), (12s, 5), (20s, 6), (20s, 7), (20s, 11)}

for each positive integer s. Lemma 4.3 already excludes (20s, 2), (20s, 7), and (20s, 11) when

3 ∤ s, and Lemma 2.5 excludes (20s, 1), but the argument here for the other cases also handles

these.

For each case of (k, l), we list below a (k + l)-block that we will show has no (k, l)-split.

The matrices M3,M4,M5 are as in Definition 4.1. We set M = (αs− β)Mi :γMj to consider

k = iαs and l = γj − βi. We group the cases by the matrix Mj . When 5 | k, we use M5 as

the main repeated block; in the one case where 5 ∤ k and l = 5, we use M4.

k l (k + l)-block M k l (k + l)-block M
20s 1 (4s− 3)M5 :4M4 20s 2 (4s− 2)M5 :4M3

20s 6 (4s− 2)M5 :4M4 20s 7 (4s− 1)M5 :4M3

20s 11 (4s− 1)M5 :4M4 15s 4 (3s− 1)M5 :3M3

20s 3 (4s− 1)M5 :2M4 12s 5 (3s− 1)M4 :3M3

In Lemma 4.2, we showed that blocks formed using only columns from pMq have row-sum

divisible by q. Also, for i < q ≤ 5, each column of Mi except the last appears in Mq, and

we showed that a block using one copy of this special column plus columns from Mq has

row-sum congruent to i modulo q. In each case l is outside the achievable class.

Now up to γ copies of the exceptional column are available to use in forming an l-block.

We use the same technique as before to eliminate these cases; the fact that we only need to

exclude row-sum l itself instead of a full congruence class is crucial.

For M4, the special column is (1, 0, 1, 0, 0)T ; for M3, it is (1, 1, 1, 1, 0)
T . Consider a block

B in M using x copies of the special column. Again let a, b, c, d, e, respectively, denote the

number of copies of the five columns in M5 that are used in B. In the last case, let z be the
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number of copies of the rightmost column of M4. As before, we first obtain constraints on

these multiplicities by ensuring that all rows have the same number of 0s. These determine

the multiplicities in terms of c and x, which in turn yields a formula for the row sum. We

then argue that l is not achievable. In the computation, several cases combine.

M constraints from 0s a b c d e σ(B)
pM5 :γM4 a b+x c+d c+e+x d+e+x 2c 2c−x c c c−x 5c−x
pM5 :4M3 a b c+d c+e d+e+x 2c−x 2c−x c c−x c−x 5c−2x
pM4 :3M3 a b+z c+d c+z d+z+x 2c−x c c c−x 0 4c−x

To form an l-block in pM5 : γMj , we need x ≤ q. In each case, the requirement that

d and e are nonnegative yields c ≥ x. Also the row-sum in the repeated block Mi is the

coefficient on c in σ(B). To achieve σ(B) = l, this fixes the congruence class of x modulo i.

Since x ≤ γ and c ≥ x, in each case this produces too large a value of l.

For 5 | k and l ≡ 1 mod 5, an l-block in pM5 :4M4 requires x = 4, but then l ≥ 16.

For 5 | k and l ≡ 2 mod 5, an l-block in pM5 :4M3 requires x = 4, but then l ≥ 12.

For 5 | k and l = 3, an l-block in pM5 :2M4 requires x = 2, but then l ≥ 8.

For 5 | k and l = 4, an l-block in pM5 :3M3 requires x = 3, but then l ≥ 9.

For 4 | k and l = 5, an l-block in pN4 :3M3 requires x = 3, but then l ≥ 9.

The final contradictions in the proof of Theorem 5.1 show how delicate these exceptions

are. Each case requires l to be at least in the next higher congruence class modulo i. Indeed,

after excluding these small values of l, the conditions are sufficient.

Theorem 5.2. (k, l) ∈ S5 if and only if 3, 4, 5 each divide k or l, and also 11 6= min{k, l} > 7.

Proof. Necessity was established in Lemma 5.1. For sufficiency, we consider explicitly the

pairs that have not been excluded. We may assume by symmetry that k is divisible by

at least two of {3, 4, 5}. Note that the pairs (60r, 8), (60r, 9), and (60r, 10) have the form

(15s, 4t), (20s, 3t), or (12s, 5t), respectively. Hence it suffices to show that for s ≥ 1 the

following pairs lie in S5:

{(20s, 3t) : t ≥ 3} {(15s, 4t) : t ≥ 2}
{(12s, 5t) : t ≥ 2} {(60s, t) : t ≥ 12}.

Since D(5) = 5, every block M with five rows decomposes into indecomposable blocks

with row-sums at most 5. These blocks provide a partition of the integer σ(M). Our task

is to show that every partition of k + l whose parts are all at most 5 splits into portions

summing to k and to l when (k, l) lies in a family listed above. Let br be the number of

copies of r in the partition. We may assume that no two parts sum to at most 5, because

it then suffices to consider the partition obtained by replacing them with one part equal to

their sum. In particular, b1 + b2 + b3 ≤ 1, except that b3 > 1 is possible when b1 = b2 = 0.
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For each family, we use induction on s+ t. In each family, the claim trivially holds for the

degenerate case s = 0. We first verify splittability for the instances with s ≥ 1 and smallest

t. Subsequently, we may assume that s ≥ 1 and that t exceeds the smallest value, which

allows us by the induction hypothesis to assume when l = jt that there is no j-block. In the

last family, the gap for l = 11 forces us to consider (60s, t) separately for t ∈ {8, 9, 10}.

Case 1: (20s, 3t) with t ≥ 3, so σ(M) ≥ 29. For t = 3 and s ≥ 1, suppose that M

contains no 20-block or 9-block. We have b3 ≤ 2 and 4b4 + 5b5 ≤ 16, since b4b5 = 0. Hence

σ(M) ≤ 22, a contradiction. For larger t, we may assume b3 = 0, b4 ≤ 4, and b5 ≤ 3. Also

b1 + 2b2 ≤ 2. Hence σ(M) ≤ 33, which leaves only the case (20, 12). This arises only when

(b1, b4, b5) = (1, 4, 3), but then three 4-blocks yields the split.

Case 2: (15s, 4t) with t ≥ 2, so σ(M) ≥ 23. For t = 2 and s ≥ 1, suppose that M

contains no 15-block or 8-block. We have b4 ≤ 1 and 3b3 + 5b5 ≤ 12, since b3b5 = 0. Hence

σ(M) ≤ 16, a contradiction. For larger t, we may assume b4 = 0, b3 ≤ 4, and b5 ≤ 2. Hence

σ(M) ≤ 22, a contradiction.

Case 3: (12s, 5t) with t ≥ 2, so σ(M) ≥ 22. For t = 2 and s ≥ 1, suppose that M

contains no 12-block or 10-block. We have b5 ≤ 1 and 3b3 + 4b4 ≤ 11. Hence σ(M) ≤ 16, a

contradiction. For larger t, we may assume b5 = 0, b4 ≤ 2, and b3 ≤ 3. Hence σ(M) ≤ 17, a

contradiction.

Case 4: (60s, l) with l ≥ 12. SinceD(5) = 5, it suffices to obtain the split for 12 ≤ l ≤ 16.

For l ∈ {12, 15}, apply Case 1 above. For (60s, 13), any single part in {1, 3, 4, 5} reduces the

search to an earlier case; since 60s + 13 is odd, the parts cannot all equal 2. Similarly, for

(60s, 14) it suffices to have a part in {1, 2, 4, 5}, and the parts cannot all equal 3.
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[5] A. Kézdy, J. Lehel, and R.C. Powers, Heavy transversals and indecomposable hypergraphs.
Combinatorica 23 (2003), no. 2, 303–310.

11


