OAK

Boosted Prediction of Antihypertensive Peptides Using Deep Learning

Metadata Downloads
Abstract
Heart attack and other heart-related diseases are among the main causes of fatalities in the world. These diseases and some other severe problems like kidney failure and paralysis are mainly caused by hypertension. Since bioactive peptides extracted from naturally existing food substances possess antihypertensive activity, these antihypertensive peptides (AHTP) can function as prospective replacements for existing pharmacological drugs with no or fewer side effects. Such naturally existing peptides can be identified using in-silico approaches. The in-silico methods have been proven to save huge amounts of time and money in the identification of effective peptides. The proposed methodology is a deep learning-based in-silico approach for the identification of antihypertensive peptides (AHTPs). An ensemble method is proposed that combines convolutional neural network (CNN) and support vector machine (SVM) classifiers. Amino acid composition (AAC) and g-gap dipeptide composition (DPC) techniques are used for feature extraction. The proposed methodology has been evaluated on two standard antihypertensive peptide sequence datasets. The model yields 95% accuracy on the benchmarking dataset and 88.9% accuracy on the independent dataset. Comparative analysis is provided to demonstrate that the proposed method outperforms existing state-of-the-art methods on both of the benchmarking and independent datasets.
Author(s)
Rauf, AnumKiran, AqsaHassan, Malik TahirMahmood, SajidMustafa, GhulamJeon, Moongu
Issued Date
2021-03
Type
Article
DOI
10.3390/app11052316
URI
https://scholar.gist.ac.kr/handle/local/11631
Publisher
MDPI
Citation
APPLIED SCIENCES-BASEL, v.11, no.5, pp.1 - 11
ISSN
2076-3417
Appears in Collections:
Department of Electrical Engineering and Computer Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.