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Abstract: Heart attack and other heart-related diseases are among the main causes of fatalities in
the world. These diseases and some other severe problems like kidney failure and paralysis are
mainly caused by hypertension. Since bioactive peptides extracted from naturally existing food
substances possess antihypertensive activity, these antihypertensive peptides (AHTP) can function
as prospective replacements for existing pharmacological drugs with no or fewer side effects. Such
naturally existing peptides can be identified using in-silico approaches. The in-silico methods have
been proven to save huge amounts of time and money in the identification of effective peptides.
The proposed methodology is a deep learning-based in-silico approach for the identification of
antihypertensive peptides (AHTPs). An ensemble method is proposed that combines convolutional
neural network (CNN) and support vector machine (SVM) classifiers. Amino acid composition (AAC)
and g-gap dipeptide composition (DPC) techniques are used for feature extraction. The proposed
methodology has been evaluated on two standard antihypertensive peptide sequence datasets. The
model yields 95% accuracy on the benchmarking dataset and 88.9% accuracy on the independent
dataset. Comparative analysis is provided to demonstrate that the proposed method outperforms
existing state-of-the-art methods on both of the benchmarking and independent datasets.

Keywords: convolutional neural networks (CNN); hypertension (HT); antihypertensive peptides
(AHTPs); support vector machine (SVM); boosted prediction; ensemble classifier

1. Introduction

Since hypertension (HT) is a general medical issue that affects about twenty-five
percent of the populace, the chances of a person becoming hypertensive increase with
age [1]. Frequent high blood pressure generally causes hypertension and it is known as
a silent killer. HT typically has no apparent symptoms, as compared to other diseases
like fever and asthma. Therefore, it might take a while for a person to be diagnosed as
hypertensive. Delayed diagnosis may cause severe medical issues like stroke, heart-related
diseases, and other significant abnormalities like renal failure, multi-infarct dementia, harm
to brain organs, and the cardiovascular illnesses [2,3].

The high prevalence and dangerous effects of hypertension signify the need to discover
novel treatments and drugs to lessen/eradicate its consequences. Currently, there are
many drugs for HT available on the market, like angiotensin-converting enzyme (ACE)
inhibitors, beta-blockers, calcium channel blockers, k+ sparing diuretics, loop diuretics,
and thiazide diuretics [4]. Although these drugs have been proven to be beneficial for
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the treatment of HT, they may cause notable side-effects, such as hypotension, metabolic
alkalosis, depression, hallucinations, vivid dreams, hyperglycemia, angioneurotic edema,
cough, ankle edema, tachycardia, headache, urinary urgency, functional renal insufficiency,
hyponatremia, impotence, and insomnia [5]. Therefore, the discovery of secure medicines
to treat and/or reduce the harmful effects of hypertension is indispensable. A medicine is
considered secure if it has no or minimum side-effects.

The angiotensin-converting enzyme (ACE) is an essential element of the renin–angio-
tensin system (RAS). It is responsible for balancing the fluid volumes in the body and thus
controlling the blood pressure. It regulates the conversion of angiotensin-I (a decapeptide)
into the active angiotensin-II (an octapeptide), which constricts the blood veins. It is a
powerful naphazoline hormone and a mineralocorticoid-animating peptide that controls
blood pressure.

Thus, ACE is indirectly responsible for high blood pressure by causing blood veins
to constrict. Many biological peptides have the potential to inhibit ACE in the renin–
angiotensin system, and are thus useful to prevent and treat HT [6]. A large number of
such biological peptides are found in the proteins from foods prepared from animals and
plants such as, fish, cheese, milk, egg, corn, algae, microorganisms, insects, fungi, wakame,
amaranth, soybean, wheat, chicken, snake, bovine, etc. [7]. Such peptides are called
antihypertensive peptides (AHTPs), and their identification can lead to the development
of more beneficial drugs (with less side effects) for the treatment of HT. However, the
identification of a peptide that can function as an antihypertensive peptide is an expensive
task in terms of time and cost. In-silico approaches can be of great help in developing
systems that can absolutely filter out the non-antihypertensive peptides (non-AHTP) and
provide a set of peptides with the potential to inhibit hypertensive conditions. There is a
great need to develop such systems that can produce highly accurate predictions of such
peptides. Recently, limited studies have demonstrated the power of machine learning
(ML)-based methods to develop AHTP prediction systems.

Firstly, Wang et al. quantitatively defined the relationship among target molecular
structures and biological activities, and created a quantitative structure–activity relationship
(QSARs) model to confirm the structure of the ACE-inhibitor peptides and the biological
activities of them. To create this model, they utilized g-scale features and used partial
least square (PLS) regression-based methods. They have created this model on the basis of
very small peptides (e.g., peptides with lengths of two and three), and can only predict
the inhibitory activity of these tiny peptides, which is the main disadvantage of this
study [8]. Another approach was built by Kumar et al. in 2015 in this area [9]. The
dataset was divided into four different categories to extract features. The categories were
named (1) tiny (dipeptides and tripeptides), (2) small (tetrapeptides, pentapeptides, and
hexapeptides), (3) medium (i.e., sizes ranging between seven and twelve), and (4) large
peptides (greater than twelve amino acids). For tiny peptides, chemical descriptors were
extracted to generate support vector machine (SVM)-based regression models, and they
achieved a correlation of 0.701 for dipeptides and 0.543 for tripeptides. For smaller peptides,
SVM-based classification models were developed, and the maximum obtained accuracies
were 76.67% for tetrapeptide, 72.04% for pentapeptide, and 77.39% for hexapeptides. For
medium and large peptides, amino acid composition features were extracted to develop
SVM-based classification models, and accuracies of 82.61% for medium peptides and 84.21%
for large peptides were attained. Moreover, a web-based platform called AHTpin was also
created to screen, predict, and design AHTPs. Win et al. developed a computerized AHTPs
prediction system [10] that employs random forest (RF) models. The models are trained
by using the groupings of amino acid composition, dipeptide composition, and pseudo
amino acid composition feature encoding techniques. The system demonstrates a marginal
improvement over AHTpin, with an accuracy of 84.73% when run on an independent test
dataset. Furthermore, the feature importance analysis emphasized the preference at the
C-terminal of the proline amino acids and non-polar amino acids, and also the capacity of
little peptides for vigorous activity.
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An online web platform (called PAAP) is also available for public use of the proposed
model it contains. The mAHTpred meta-predictor is another approach to classifying
AHTPs [11]. To identify AHTPs, Manavalan et al. developed mAHTpred by using eight
feature encoding schemes to construct 51 feature vectors from two different datasets
(benchmarking dataset and independent dataset). Extremely randomized tree (ERT)-based
models were created by using these 51 feature vectors. A new feature vector consisting
of the predicted probabilities of AHTPs was calculated by using the above mentioned
ERT-based models. The new feature vector was then utilized as an input for four different
ML algorithms: SVM, gradient boosting (GB), RF, and ERT. Final predictions were made
by using an ensemble of SVM, GB, RF, and ERT models.

AHTP prediction has been realized in [12], using recursive feature elimination. This
work generates and feeds optimal features into the ensemble of four classification al-
gorithms (SVM, C4.5 Decision Tree, random forest (RF), and extreme gradient boosting
(XGBoost)) in order to achieve the final prediction. Deep-AmPEP30 is a recent deep
learning-based model, devised for the prediction of short-length antimicrobial peptides
(AMP), which is another important bioactive peptide sequence [13]. Deep-AmPEP30
employs CNN on a reduced set of amino acid composition (AAC) features. This group
experimented with a benchmark dataset consisting of balanced classes, with accuracy
scores of 77% and 85% gained by both Area under the Receiver Operating Characteristic
Curve (AUC-ROC) and Area under the Precision-Recall Curve (AUC-PR), respectively.
In this research activity, a deep learning-based antihypertensive peptide predictor is pre-
sented. The proposed approach uses the standard datasets used in [9] and [11]. Features
are generated by using two feature-encoding techniques: amino acid composition (AAC)
and g-gap dipeptide composition (g-gap DPC). Dipeptide composition features are further
represented as red, green, and blue (RGB) images. An RGB image is created against each
dataset. In the literature, ensemble-based methods have been successfully applied for the
task of classification [11,12]. In such methods, multiple classifiers are combined in parallel
or in sequence to boost the classification performance. In the proposed method as well, an
ensemble of classifiers is used to make a boosted prediction by employing a convolutional
neural network (CNN) followed by a support vector machine (SVM). Four different CNN
models are trained on the generated image dataset. The predicted outputs of these four
CNN models are combined with the AAC features for every sequence, resulting in new
feature vectors. These new feature vectors are then used to train an SVM model for the
final classification of the peptide sequences as either antihypertensive or not. The proposed
predictor is evaluated using a 10-fold cross-validation method, and achieves an accuracy of
95% on the benchmarking dataset and 88.9% on the independent dataset.

2. Materials and Methods

This work is carried out in the following six steps: (1) data acquisition and analysis, (2)
feature extraction, (3) RGB image generation, (4) training the CNN models, (5) generating
new feature vectors on the basis of the CNN model’s output and the ACC feature, and (6)
training the SVM classifier. Details of each step are provided in this section. The overall
methodology is outlined in Figure 1.

2.1. Data Acquisition and Analysis

Two datasets are used in this work. One is considered as the benchmarking dataset [9]
and the other one is taken as an independent dataset [11]. We used the same benchmarking
dataset during the model construction as was used in previous works [9,11] to compare
our approach. The independent dataset was used for test data during the evaluation. Both
datasets consist of antihypertensive peptide (AHTP) sequences as positive class samples
and non-antihypertensive peptide (non-AHTP) sequences as negative class samples. All
peptide sequences are made up of twenty amino acid residues. The benchmarking dataset
contains 913 samples of the positive class and 913 samples of the negative class. Similarly,
the independent dataset consists of 386 samples of each class. Data analysis of both datasets,
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and the total number of occurrences of each of the twenty amino acid residues (A, R, N, D,
C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V) in both datasets, is given in Table 1.
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Figure 1. Steps of the proposed methodology.

Statistics for the peptide sequences are presented in Table 2. It shows the minimum,
maximum and average lengths of the peptide sequences in both datasets.

2.2. Feature Extraction

Features are extracted from the peptide sequence dataset by applying two feature
encoding schemes (i.e., AAC and g-gap DPC). In total, 20 features are extracted by using
AAC and 400 features (of shape 20-by-20) by using each DPC with a gap of zero, one, two,
and three, respectively. Overall, there are 1620 features for each sample of the dataset. The
feature encoding schemes are described in detail below.

2.2.1. Amino Acid Composition (AAC)

There are twenty standard amino acids that repeat in each protein sequence. Amino
acid composition is a feature extraction technique that represents the peptide by calculating
the percentage of each amino acid in a given peptide sequence. Figure 2 shows an example
of calculating the AAC features for a sample peptide sequence. In this way, we get a feature
vector of size twenty.

2.2.2. G-Gap Dipeptide Composition (DPC)

A dipeptide is a composite of two amino acid residues, with or without a gap between
them. DPC is computed as the ratio of the number of occurrences of a dipeptide to the
entire length of the sequence. It can also be computed with a gap of amino acids, where the
value of g ranges from 0 to 3. Such a DPC feature is called g-gap dipeptide composition.
DPC generates a 20-by-20 matrix that contains 400 features for each value of the g-gap, as
shown in Figure 3 (for g-gap = 0).
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Table 1. Occurrence of each amino acid residue in both datasets.

Dataset A R N D C Q E G H I L K M F P S T W Y V

Independent
Positive 164 99 46 62 20 120 103 157 82 133 225 164 99 46 62 20 120 103 157 82

Independent
Negative 319 270 337 306 280 276 297 304 247 301 341 319 270 337 306 280 276 297 304 247

All Independent 483 369 383 368 300 396 400 461 329 434 566 483 369 383 368 300 396 400 461 329
Benchmarking

Positive 374 263 236 174 48 410 354 442 202 368 625 374 263 236 174 48 410 354 442 202

Benchmarking
Negative 607 420 331 404 77 305 454 547 149 414 687 607 420 331 404 77 305 454 547 149

All Benchmarking 981 683 567 578 125 715 808 989 351 782 1312 981 683 567 578 125 715 808 989 351
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2.3. RGB Image Generation

DPC-generated 20-by-20 matrices are used to generate RGB images. Each image
consists of three (20 × 20) matrices. The values of each matrix are taken as pixels and
the three matrices represent the three colors: red, green, and blue (RGB). Matrices with
different combinations of g-gaps are used to generate distinct images for each g-gap, as
given in Table 3. For example, the first image is generated by considering a DPC with
g-gap = 0 as the red color matrix, a DPC with g-gap = 1 as the green color matrix, and a
DPC with g-gap = 2 as the blue color matrix.

Table 3. Combinations of g-gap dipeptide composition (DPC) features for the sample peptide.

Model Combinations

G013 DPC with gap 0, DPC with gap 1, DPC with gap 3
G012 DPC with gap 0, DPC with gap 1, DPC with gap 2
G023 DPC with gap 0, DPC with gap 2, DPC with gap 3
G123 DPC with gap 1, DPC with gap 2, DPC with gap 3

Figure 3 shows that the values in all matrices are less than 1, and thus could not be
properly visualized in the image. To visualize the image properly, we have replaced all
the non-zero values of DPC features with 255 (i.e., the largest value of pixel). Figure 4
shows the procedure for converting the peptide to an image for the first combination on
the sample peptide. Using this procedure, we generated four image datasets, as shown in
Figure 5.
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2.4. Trainig CNN Models

In this step, the convolutional neural network (CNN) is used, which is one of the
most prominently utilized approaches for image analysis [14]. It first extracts features
from an image by applying convolutional layers, i.e., by striking the number of feature
maps (kernels) on it. These feature maps are considered as features of the image, and
then pooling layers are applied to reduce the dimensionality of each feature map without
losing useful information. This is followed by a classification (dense) layer, which is a
conventional artificial neural network [14].

In the proposed approach, each image generated in the previous step 2.3 is used as an
input for the CNN. Four CNN models are generated for the classification of each sample
peptide. The CNN architecture and parameters used are defined in Table 4 and SVM
parameters are defined in Table 5. We take the prediction value of each four CNN models,
which is either 0 if the predicted class is negative or 1 if the predicted class is positive.
The performance evaluation of CNN models is presented in Table 6. Although the CNN
models demonstrate reasonable accuracy, the performance was inferior to the benchmark
approaches in [9] and [11]. Thus, we apply a boosted prediction approach by combining
another promising classifier (SVM) which outperforms the benchmark approaches. SVM
has gained prominent success in bioinformatics, including in the classification of protein
sequences [15,16]. A proposed boosting step is described in the following section.

Table 4. Parameters for CNN.

Parameters Values

Input shape 20 × 20 × 3
Number of convolutional layers 2

Number of dense layers 2
Number of filters in first convolutional layer 32

Number of filters in second convolutional layer 8
Shape of filters 3 × 3

Maxpooling shape 2 × 2
Dropout rate 0.5

Batch size 35
Epochs 270

Activation functions in convolutional layers Relu, Sigmoid
Optimizer Adam

Loss function Binary Crossentropy
Number of filters in first dense layer 170

Number of filters in second dense layer 1
Activation functions in dense layers Relu, Sigmoid
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Table 5. Parameters used in the support vector machine (SVM) classifier.

Parameters Values

Kernel Radial Basis Function
Gemma 0.5

Constant (c) 2

Table 6. The 10-fold cross-validation results of 4 CNN models on benchmarking and independent
datasets.

Model Dataset ACC Sp Sn MCC AUC

G013

Benchmarking

0.8226 0.7974 0.8477 0.6477 0.8226
G012 0.8099 0.7985 0.8213 0.6217 0.8099
G023 0.8078 0.7853 0.8302 0.6168 0.8078
G123 0.8083 0.7865 0.8306 0.6185 0.8083

G013

Independent

0.8696 0.9221 0.9454 0.8696 0.8696
G012 0.9352 0.9326 0.9377 0.8708 0.9352
G023 0.9350 0.9298 0.9402 0.8706 0.9350
G123 0.9324 0.9195 0.9453 0.8665 0.9324

2.5. Boosting as Input Prediction by Ensembling an SVM Classifier Using a Combination of CNN
Models as Output and AAC Features as Input

A new feature vector is generated by combining the CNN models’ outputs and the
20 AAC features. In this way, we get a new feature vector against each sample. The length
of this feature vector is 24.

These 24 features are presented to the SVM for final classification. The parameters used
for the SVM classifier are presented in Table 5. The performance evaluation is discussed
in Section 3.1 and Table 7. The obtained results show that the proposed method using
boosting outperforms the CNN models as well as the existing approaches.

Table 7. The 10-fold cross-validation results of the boosted-SVM predictor on the benchmarking and
independent datasets.

Dataset ACC Sp Sn MCC AUC

Benchmarking 0.9584 0.9201 0.9967 0.9203 0.9584
Independent 0.9235 0.8471 1.0 0.8576 0.9235

2.6. Computational Environments

The proposed approach was developed on Google Colaboratory (which is a cloud-
based online Jupyter Notebook platform) by using python programming language. We
chose Google Colaboratory because we did not have to install python and its libraries
manually, and it has a diverse range of python libraries already installed on the cloud. It
also provides Graphics Processing Unit (GPU), which makes the training process relatively
fast. For deep learning, we have used python’s library Keras with the TensorFlow backend.

3. Results and Discussion

The experimental results of the proposed approach are discussed in this section. A
comparative analysis with existing methods is also provided to demonstrate that the
proposed approach outperforms the existing approaches.

3.1. Model Evaluation Results on Benchmarking and Independent Dataset

The proposed model is evaluated on both benchmarking and independent datasets, by
using the 10-fold cross validation. Commonly used performance metrics are calculated. The
metrics include accuracy (ACC), sensitivity (Sn), specificity (Sp), Matthews’s correlation
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coefficient (MCC), and area under the curve (AUC). Four CNN models are trained on both
datasets, and the results of the performance metrics are shown in Table 6. The outputs of
the CNN models and the AAC features are then used as inputs to train the SVM model,
which is our final predictor. Table 7 shows the performance of the SVM model on both
datasets.

3.2. Comparative Analysis and Discussion

The performance of this work is compared with three existing approaches, including
AHTpin [9,10] and mAHTPred [11]. A detailed description of the existing approaches is
provided in the introduction section. AHTpin consists of two prediction models; one is
based on AAC features and the other is based on atomic composition features. Our results
are compared with both of these two models. mAHTPred achieved the highest accuracy as
compared to the previous two techniques [11]. We compared our results with those of both
mAHTPred and the other two techniques, by running them on the same datasets.

The comparison results show that the proposed boosted predictor outperforms the
existing techniques, as shown in Table 8. The boosted predictor for AHTPs achieved a
better performance on both datasets, in terms of ACC, Sp, Sn, MCC, and AUC. The ACC
and MCC results are approximately 9–21% higher than those of the previous approaches.

Table 8. Comparison of the proposed approach and existing approaches on benchmarking and
independent datasets.

Methods Dataset ACC Sp Sn MCC AUC

Proposed

Benchmarking

0.958 0.920 0.996 0.920 0.958
mAHTPred 0.848 0.874 0.821 0.697 0.865

PAAP 0.791 0.780 0.865 0.585 NA
AHTpin_AAC 0.785 0.793 0.865 0.585 NA
AHTpin_ATC 0.785 0.787 0.865 0.573 NA

Proposed

Independent

0.895 0.841 0.948 0.795 0.895
mAHTPred 0.883 0.873 0.894 0.767 0.951

PAAP NA NA NA NA NA
AHTpin_AAC 0.800 0.800 0.800 0.601 0.800
AHTpin_ATC 0.798 0.842 0.798 0.641 0.888

The independent dataset was created by Manavalan et al. and we used it to check
the robustness of mAHTPred [11]. Comparison results of independent dataset are also
provided in Table 8.

4. Conclusions

Hypertension is connected to numerous diseases such as cancer, heart attack, renal
failure, and paralysis. Bioactive peptides are derived naturally and have antihypertensive
activity. Bioactive peptides work as encouraging substitutes to pharmacological medicines.
Such peptides are useful, but to find out whether the peptides have antihypertensive
characteristics or not is an expensive process. Bioinformatics could be used to build an
automated system to identify the antihypertensive peptides and some solutions have
already been proposed [9,11]. However, there is still room for performance improvement
in such tools. In this paper, we present an automated antihypertensive peptides prediction
system. It takes a peptide sequence as the input and predicts whether the given peptide is
antihypertensive or not. The comparative results demonstrate that the proposed approach
outperforms the existing state-of-the-art approaches. Experimental results show that
the proposed approach yields high accuracies on standard datasets, as compared to the
previous approaches.

In future, the proposed approach can be applied to other types of biological datasets.
Exploration of other deep learning techniques, performance optimization, and the launch-
ing of a web service are also promising future directions.
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