OAK

Multi-material topology optimization considering joint stiffness using a two-step filtering approach

Metadata Downloads
Abstract
In this paper, a new method is presented to concurrently determine the structural layout and joint interface during the multi-material topology optimization (MMTO) process. Although the development of additive manufacturing techniques allows the fabrication of multi-material structures for soft materials with graded properties, joint materials for joining metals or composites are still needed. This paper proposes a novel material interpolation scheme for defining the joint area between dissimilar materials using a two-step filtering process. The general MMTO process is performed in the first filtering step. Furthermore, the filtered variables generate the joint area, and the filter radius controls the thickness of the area in the second filtering step. A modified discrete material optimization (DMO) approach is developed to control the different materials independently and to expand the applicability of the method to cases with more than two design materials. To demonstrate the performance of the proposed method, a compliance minimization problem is formulated for various volume constraints, joint thicknesses, material properties, mesh types, and number of materials. To show the scalability, 3-D design and compliant mechanism design examples are adopted. Based on numerical examples, it was confirmed that the proposed method performs well in various cases; moreover, the results demonstrate that the concurrent designing of the structural layout and joint interface leads to better performance than when joint stiffness is not considered.
Author(s)
Jung, YoungsukLee, JaewookMin, Seungjae
Issued Date
2021-12
Type
Article
DOI
10.1016/j.finel.2021.103635
URI
https://scholar.gist.ac.kr/handle/local/11157
Publisher
ELSEVIER
Citation
FINITE ELEMENTS IN ANALYSIS AND DESIGN, v.197
ISSN
0168-874X
Appears in Collections:
Department of Mechanical and Robotics Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.