OAK

Piecewise Linear Labeling Method for Speed-Adaptability Enhancement in Human Gait Phase Estimation

Metadata Downloads
Abstract
Human gait phase estimation has been studied in the field of robotics due to its importance in controlling wearable devices (e.g., robotic prostheses or exoskeletons) in a synchronized manner with the user. Researchers have attempted to estimate the user's gait phase using a learning-based method, as data-driven approaches have recently emerged in the field. In this study, we propose a new labeling method (i.e., a piecewise linear label) to have the estimator learn the ground truth based on variable toe-off onset at different walking speeds. Using whole-body marker data, we computed the angular positions and velocities of thigh and torso segments and utilized them as input data for model training. Three models (i.e., general, slow, and normal-fast) were obtained based on long short-term memory (LSTM). These models are compared in order to identify the effect of the piecewise linear label at various walking speeds. As a result, when the proposed labeling method was used while training the general model, the estimation accuracy was significantly improved. This fact was also found when estimating the user's gait phase during the mid-stance phase. Furthermore, the proposed method maintained good performance in detecting the heel-strike and toe-off. According to the findings of this study, the newly proposed labeling method could improve speed-adaptability in gait phase estimation, resulting in outstanding accuracy for both gait phase, heel-strike, and toe-off estimation. © 2001-2011 IEEE.
Author(s)
Hong, W.Lee, J.Hur, P.
Issued Date
2022-12
Type
Article
DOI
10.1109/TNSRE.2022.3229220
URI
https://scholar.gist.ac.kr/handle/local/10468
Publisher
Institute of Electrical and Electronics Engineers Inc.
Citation
IEEE Transactions on Neural Systems and Rehabilitation Engineering, v.31, pp.628 - 635
ISSN
1534-4320
Appears in Collections:
Department of Mechanical and Robotics Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.