OAK

Strengthened spin Hall effect of circularly polarized light enabled by a single-layered dielectric metasurface

Metadata Downloads
Abstract
The spin Hall effect of light, referring to the spin-dependent and transverse splitting of light at an optical interface, is an interface-dependent phenomenon. In contrast to this commonly accepted statement, it has been recently reported that the spin Hall effect under circularly polarized light is interface-independent. Despite this interface-independence, however, the reflection of the spin Hall shifted beam is mostly suppressed under near-normal incidence, where the spin Hall shift is large because of the handedness reversal that occurs during the reflection. Here we present a single-layered dielectric metasurface to realize the interface-independent and strengthened spin Hall effect of light. Numerical simulation results confirmed that the anisotropic geometry of the metasurface induced phase-reversed reflection for one linear polarization and phase-preserved reflection for the other, thereby strongly strengthening the reflection of the spin-Hall-shifted beam. Our work will pave a route toward the precise displacement of the beam at the nanoscale without perturbing its polarization state.
Author(s)
Kim, MinkyungLee, Dasol
Issued Date
2023-01
Type
Article
DOI
10.3390/ma16010283
URI
https://scholar.gist.ac.kr/handle/local/10434
Publisher
MDPI Open Access Publishing
Citation
Materials, v.16, no.1
ISSN
1996-1944
Appears in Collections:
Department of Mechanical and Robotics Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.