OAK

MLNet: Metaheuristics-Based Lightweight Deep Learning Network for Cervical Cancer Diagnosis

Metadata Downloads
Abstract
One of the leading causes of cancer-related deaths among women is cervical cancer. Early diagnosis and treatment can minimize the complications of this cancer. Recently, researchers have designed and implemented many deep learning-based automated cervical cancer diagnosis models. However, the majority of these models suffer from over-fitting, parameter tuning, and gradient vanishing problems. To overcome these problems, in this paper a metaheuristics-based lightweight deep learning network (MLNet) is proposed. Initially, the hyper-parameters tuning problem of convolutional neural network (CNN) is defined as a multi-objective problem. Particle swarm optimization (PSO) is used to optimally define the CNN architecture. Thereafter, Dynamically hybrid niching differential evolution (DHDE) is utilized to optimize the hyper-parameters of CNN layers. Each particle of PSO and solution of DHDE together represent the possible CNN configuration. F-score is used as a fitness function. The proposed MLNet is trained and validated on three benchmark cervical cancer datasets. On the Herlev dataset, MLNet outperforms the existing models in terms of accuracy, f-measure, sensitivity, specificity, and precision by 1.6254%, 1.5178%, 1.5780%, 1.7145%, and 1.4890%, respectively. Also, on the SIPaKMeD dataset, MLNet achieves better performance than the existing models in terms of accuracy, f-measure, sensitivity, specificity, and precision by 2.1250%, 2.2455%, 1.9074%, 1.9258%, and 1.8975%, respectively. Finally, on the Mendeley LBC dataset, MLNet achieves better performance than the competitive models in terms of accuracy, f-measure, sensitivity, specificity, and precision by 1.4680%, 1.5845%, 1.3582%, 1.3926%, and 1.4125%, respectively.
Author(s)
Kaur, ManjitSingh, DilbagKumar, VijayLee, Heung-No
Issued Date
2023-10
Type
Article
DOI
10.1109/JBHI.2022.3223127
URI
https://scholar.gist.ac.kr/handle/local/9953
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Citation
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, v.27, no.10, pp.5004 - 5014
ISSN
2168-2194
Appears in Collections:
Department of Electrical Engineering and Computer Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.