OAK

Automatic Navigation Scheme for Micro-Robot Using Magnetic Potential Field Through Field Free Point

Metadata Downloads
Abstract
Magnetic actuation is particularly useful due to its deep penetration and safety to control microrobots for biomedical purposes. This paper proposes an automatic navigation algorithm using a magnetic potential field in the form of a Field Free Point (FFP). The FFP is a powerful tool for magnetic actuation because of its efficiency and versatility, and it can also be used in Magnetic Particle Imaging (MPI). The FFP provides efficiency and versatility in imaging and actuation and the ability to perform both functions on a single device without additional hardware. We suggest a novel navigation scheme based on FFP and Magnetic Potential Field (MPF) to achieve automatic navigation. It consists of a modified attractive field with velocity-based disturbance cancellation and a repulsive field to avoid collision. The suggested algorithm, leveraging microrobot movements and effectively addressing disturbance as inertia, is characterized by its capability to reduce deviations. Thus, simulations were conducted to tune the parameters and evaluate the proposed actuation scheme's effectiveness. Also, the entire algorithm's performance was verified through experiments in a dynamic environment with moving fluid and obstacles. The results demonstrated the proposed navigation system's robustness in reaching the micro-robot to its destination even in an environment with a peak fluid velocity of 80 mm/s. © 2013 IEEE.
Author(s)
Kim, YonggyuPark, MyungjinLee, HosuYoon, Jungwon
Issued Date
2024-02
Type
Article
DOI
10.1109/ACCESS.2024.3366332
URI
https://scholar.gist.ac.kr/handle/local/9723
Publisher
Institute of Electrical and Electronics Engineers Inc.
Citation
IEEE Access, v.12, pp.30135 - 30145
ISSN
2169-3536
Appears in Collections:
Department of AI Convergence > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.