OAK

Cluster-Based Pairwise Contrastive Loss for Noise-Robust Speech Recognition

Metadata Downloads
Abstract
This paper addresses a joint training approach applied to a pipeline comprising speech enhancement (SE) and automatic speech recognition (ASR) models, where an acoustic tokenizer is included in the pipeline to leverage the linguistic information from the ASR model to the SE model. The acoustic tokenizer takes the outputs of the ASR encoder and provides a pseudo-label through K-means clustering. To transfer the linguistic information, represented by pseudo-labels, from the acoustic tokenizer to the SE model, a cluster-based pairwise contrastive (CBPC) loss function is proposed, which is a self-supervised contrastive loss function, and combined with an information noise contrastive estimation (infoNCE) loss function. This combined loss function prevents the SE model from overfitting to outlier samples and represents the pronunciation variability in samples with the same pseudo-label. The effectiveness of the proposed CBPC loss function is evaluated on a noisy LibriSpeech dataset by measuring both the speech quality scores and the word error rate (WER). The experimental results reveal that the proposed joint training approach using the described CBPC loss function achieves a lower WER than the conventional joint training approaches. In addition, it is demonstrated that the speech quality scores of the SE model trained using the proposed training approach are higher than those of the standalone-SE model and SE models trained using conventional joint training approaches. An ablation study is also conducted to investigate the effects of different combinations of loss functions on the speech quality scores and WER. Here, it is revealed that the proposed CBPC loss function combined with infoNCE contributes to a reduced WER and an increase in most of the speech quality scores. © 2024 by the authors.
Author(s)
Lee, Geon WooKim, Hong Kook
Issued Date
2024-04
Type
Article
DOI
10.3390/s24082573
URI
https://scholar.gist.ac.kr/handle/local/9610
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Citation
Sensors, v.24, no.8
ISSN
1424-8220
Appears in Collections:
Department of Electrical Engineering and Computer Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.