OAK

The impact of matrix stiffness on hepatic cell function, liver fibrosis, and hepatocellular carcinoma—Based on quantitative data

Metadata Downloads
Abstract
Over the past few decades, extensive research has explored the development of supportive scaffold materials for in vitro hepatic cell culture, to effectively mimic in vivo microenvironments. It is crucial for hepatic disease modeling, drug screening, and therapeutic evaluations, considering the ethical concerns and practical challenges associated with in vivo experiments. This review offers a comprehensive perspective on hepatic cell culture using bioscaffolds by encompassing all stages of hepatic diseases—from a healthy liver to fibrosis and hepatocellular carcinoma (HCC)—with a specific focus on matrix stiffness. This review begins by providing physiological and functional overviews of the liver. Subsequently, it explores hepatic cellular behaviors dependent on matrix stiffness from previous reports. For hepatic cell activities, softer matrices showed significant advantages over stiffer ones in terms of cell proliferation, migration, and hepatic functions. Conversely, stiffer matrices induced myofibroblastic activation of hepatic stellate cells, contributing to the further progression of fibrosis. Elevated matrix stiffness also correlates with HCC by increasing proliferation, epithelial-mesenchymal transition, metastasis, and drug resistance of HCC cells. In addition, we provide quantitative information on available data to offer valuable perspectives for refining the preparation and development of matrices for hepatic tissue engineering. We also suggest directions for further research on this topic. © 2024 Author(s).
Author(s)
Min, KiyoonKaruppannan, Sathish KumarTae, Giyoong
Issued Date
2024-06
Type
Article
DOI
10.1063/5.0197875
URI
https://scholar.gist.ac.kr/handle/local/9521
Publisher
American Institute of Physics
Citation
Biophysics Reviews, v.5, no.2
ISSN
2688-4089
Appears in Collections:
Department of Materials Science and Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.