OAK

Polyphonic Piano Music Transcription System Exploiting Mutual Correlations of Different Musical Note States

Metadata Downloads
Abstract
Generally, polyphonic piano music transcription systems are designed to estimate and determine pitch activities along with various note states for each audio frame. While the music transcription system has multiple uses in the Music Information Retrieval (MIR) field, due to the complicated structures of the note events, precisely predicting various note states is still regarded as a challenging task. Accordingly, approaches to designing neural network architectures have evolved to facilitate the joint prediction of each note state. However, recent models have not been able to efficiently exploit mutual correlations among different note states. The key contribution of our work is that we verified mutual correlations between the different note states and reflected them in the model architecture. It enables the transcription system to recognize clearer note events and produce high-quality real-world results. We propose a kernel-sharing feature extractor module for exploiting those mutual correlations in the feature extraction step. Moreover, to make a system recognize the shape of the pitch envelope, we added some connections between the note state-specific detector modules in the note state detection step. The efficacy of our architecture was thoroughly validated in a series of experiments using the publicly available MAESTRO datasets proposed by Google Magenta. Furthermore, ablation studies are performed to demonstrate notions of those mutual correlations and show the impact and significance of the suggested approach. © 2013 IEEE.
Author(s)
Kim, TaehyeonLee, DonghyeonKim, Man-JeAhn, Chang Wook
Issued Date
2024-07
Type
Article
DOI
10.1109/ACCESS.2024.3425167
URI
https://scholar.gist.ac.kr/handle/local/9454
Publisher
Institute of Electrical and Electronics Engineers Inc.
Citation
IEEE Access, v.12, pp.93689 - 93700
ISSN
2169-3536
Appears in Collections:
Department of AI Convergence > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.