OAK

Prediction of hydroxyl radical exposure during ozonation using different machine learning methods with ozone decay kinetic parameters

Metadata Downloads
Abstract
The abatement of micropollutants by ozonation can be accurately calculated by measuring the exposures of molecular ozone (O3) and hydroxyl radical (•OH) (i.e., ∫[O3]dt and ∫[•OH]dt). In the actual ozonation process, ∫[O3]dt values can be calculated by monitoring the O3 decay during the process. However, calculating ∫[•OH]dt is challenging in the field, which necessitates developing models to predict ∫[•OH]dt from measurable parameters. This study demonstrates the development of machine learning models to predict ∫[•OH]dt (the output variable) from five basic input variables (pH, dissolved organic carbon concentration, alkalinity, temperature, and O3 dose) and two optional ones (∫[O3]dt and instantaneous ozone demand, IOD). To develop the models, four different machine learning methods (random forest, support vector regression, artificial neural network, and Gaussian process regression) were employed using the input and output variables measured (or determined) in 130 different natural water samples. The results indicated that incorporating ∫[O3]dt as an input variable significantly improved the accuracy of prediction models, increasing overall R2 by 0.01−0.09, depending on the machine learning method. This suggests that ∫[O3]dt plays a crucial role as a key variable reflecting the •OH-yielding characteristics of dissolved organic matter. Conversely, IOD had a minimal impact on the accuracy of the prediction models. Generally, machine-learning-based prediction models outperformed those based on the response surface methodology developed as a control. Notably, models utilizing the Gaussian process regression algorithm demonstrated the highest coefficients of determination (overall R2 = 0.91−0.95) among the prediction models. © 2024 Elsevier Ltd
Author(s)
Cha, DongwonPark, SanghunKim, Min SikLee, JaesangLee, YunhoCho, Kyung HwaLee, Changha
Issued Date
2024-09
Type
Article
DOI
10.1016/j.watres.2024.122067
URI
https://scholar.gist.ac.kr/handle/local/9370
Publisher
Elsevier Ltd
Citation
Water Research, v.261
ISSN
0043-1354
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.