OAK

Electrodynamics-based quantum gate optimization with born scattering

Metadata Downloads
Abstract
In this paper, we propose employing electron scattering to realize unitary quantum gates that are controlled by three qubits. Using Feynman’s rules, we find an expression for the transition amplitude for scattering from an external electromagnetic source. In this context, the scattering amplitude is modeled as a unitary gate whose state can be regulated. The optimal value of the vector potential needed to implement the gate is obtained by minimizing the difference between the designed gate and the target gate, with the total energy consumed as a constraint. The design algorithm is obtained by discretizing the resulting integral equations into vector equations. This design algorithm can be applied in various fields such as quantum computing, communication, and sensing. It offers a promising approach for developing efficient and accurate gates for quantum information processing. Furthermore, this approach can also be extended to design gates for multi-qubit systems, which are essential for large-scale quantum computing. The use of this algorithm can significantly contribute to the development of practical quantum technologies. © The Author(s) 2024.
Author(s)
Gautam, KumarAhn, Chang Wook
Issued Date
2024-10
Type
Article
DOI
10.1038/s41598-024-76636-y
URI
https://scholar.gist.ac.kr/handle/local/9279
Publisher
Nature Research
Citation
Scientific Reports, v.14, no.1
ISSN
2045-2322
Appears in Collections:
Department of AI Convergence > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.