OAK

Efficient removal of short-chain perfluoroalkyl substances (PFAS) using asymmetric membrane capacitive deionization

Metadata Downloads
Abstract
Concerns have been raised over the persistence and potential health risks of perfluoroalkyl substances (PFAS). PFAS pose significant challenges in water treatment owing to their chemical stability and the difficulty of treating them with conventional purification methods. Although traditional water treatment methods for contaminant removal have been explored, their effectiveness against PFAS remains limited. This gap in knowledge highlights the need for innovative approaches. This study introduces asymmetric membrane capacitive deionization (ACDI) as a novel method for short-chain PFAS removal to address the shortcomings of existing techniques. ACDI refers to a configuration in which an anion exchange membrane is removed from a conventional membrane capacitive deionization with both a cation exchange membrane and an anion exchange membrane. Among the PFAS, perfluorobutanesulfonic acid (PFBS), which is known to be difficult to remove because of its short chain, has been the focus. The ACDI system demonstrated superior deionization capacity (28.75 mg/g) and energy efficiency (energy consumption of 0.46 Wh/g) compared to conventional CDI and membrane CDI systems. In addition, the effects of key operating parameters, such as voltage (0.5 ∼ 1.2 V), initial concentration (50 ∼ 500 mg/L), and flow rate (1 ∼ 5 mL/min), on the PFBS removal were systematically investigated and superior at 1.2 V, 500 mg/L, and 2 mL/min. This study suggests the need for further exploration of real-world applications considering the presence of competing ions in wastewater. This study provides valuable insights into advancing CDI technology for the sustainable treatment of industrial wastewater containing PFAS. © 2024
Author(s)
Jeon, SeongBeomLee, EunjiMin, TaijinLee, YunhoLee, GunheeKim, AreumYoon, Hongsik
Issued Date
2024-11
Type
Article
DOI
10.1016/j.seppur.2024.127728
URI
https://scholar.gist.ac.kr/handle/local/9271
Publisher
Elsevier B.V.
Citation
Separation and Purification Technology, v.348
ISSN
1383-5866
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.