OAK

Chiral sensing of glucose by surface-enhanced Raman spectroscopy

Metadata Downloads
Abstract
Background: Chiral-selective molecular interactions are considered crucial in numerous physiological processes. Chiral-selective analytical methods of biomolecules with sufficient sensitivity are of great interest in numerous applications. Several surface-enhanced Raman scattering (SERS)-based methods have recently been reported for chiral sensing of biomolecules. However, the lack of molecular-level understanding of SERS spectral changes of reporter and analyte molecules may mislead the development of chiral detection methods. Results: We report the chiral sensing of glucose (Glu) by SERS of L- and D-phenylalanine (Phe) with colloidal gold nanoparticles (AuNPs) synthesized by borohydride ions. The Phe SERS showed drastic spectral changes only when Glu of the same chirality as Phe was added, which also showed strong dependence on Glu concentration. The increase of δ(COO−) and decrease of νs(COO−) modes in Phe SERS, exclusively observed with the chiral-selective bimolecular interactions of chirally matching Glu, are understood as modified surface adsorption geometry of the carboxylate group. Quantitative spectral analysis for the Glu concentration of a specific chirality showed the detection limit down to 2 × 10−9 - 2 × 10−7 M levels depending on the existence of the opposite enantiomer of Glu. Significance: In this study, we demonstrated that the Phe SERS on AuNPs can be utilized in the chiral sensing of Glu molecules with quantitative concentration analysis. The bimolecular interactions of surface-adsorbed Phe and chirally matching Glu are suggested for the chiral recognition of Phe SERS. These results imply that a molecule-level understanding is indispensable for developing SERS-based chiral sensing methods. © 2024 Elsevier B.V.
Author(s)
Lee, DaeduPang, Yoonsoo
Issued Date
2024-11
Type
Article
DOI
10.1016/j.aca.2024.343290
URI
https://scholar.gist.ac.kr/handle/local/9253
Publisher
Elsevier B.V.
Citation
Analytica Chimica Acta, v.1330
ISSN
0003-2670
Appears in Collections:
Department of Chemistry > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.