OAK

Cost-Effective Electrode Fabrication Method Using Hydroxypropyl Methylcellulose Binder for Proton Exchange Membrane Water Electrolysis

Metadata Downloads
Abstract
This study explores improving proton exchange membrane water electrolysis (PEMWE) by achieving both cost-effectiveness and enhanced efficiency through the replacement of the costly and environmentally challenging Nafion ionomer with hydroxypropyl methylcellulose (HPMC) as an anode binder. HPMC, an eco-friendly and cost-effective material, was cross-linked with citric acid to form a durable hydrogel that enhances water and proton transport within the catalyst layer. Using the cross-linked HPMC binder allowed a reduction in cost to 1/54 compared to Nafion ionomer, while the performance of the cross-linked HPMC electrodes remained comparable to Nafion electrodes. After investigating with varying temperatures to determine the appropriate cross-linking temperature, it is suggested that 140 °C was the most suitable. The cross-linked HPMC demonstrated superior hydrophilicity and ionic conductivity compared to the Nafion ionomer, demonstrating its potential as a viable alternative. Initial performance in the single cell revealed that the HPMC-based anode outperformed the Nafion-based anode, with a voltage of 1.782 V vs 1.796 V at 2 A/cm2. However, despite this improved initial performance, the higher voltage decay rate of the HPMC binder (0.305 mV/h vs 0.250 mV/h) over 200 h indicates the need for further elaboration on its long-term durability. These findings suggest that the cross-linked HPMC holds promise as a cost-effective and efficient binder for PEMWE anodes, with the potential for further optimization for durability. © 2025 American Chemical Society.
Author(s)
Lee, Hyung JooJung, Hyeon-SeungKim, Jong GyeongKim, Yong WonPak, Chanho
Issued Date
2025-01
Type
Article
DOI
10.1021/acsami.4c15501
URI
https://scholar.gist.ac.kr/handle/local/9107
Publisher
American Chemical Society
Citation
ACS Applied Materials and Interfaces, v.17, no.3, pp.5268 - 5277
ISSN
1944-8244
Appears in Collections:
Department of Chemistry > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.