OAK

DD-PRiSM: a deep learning framework for decomposition and prediction of synergistic drug combinations

Metadata Downloads
Abstract
Combination therapies have emerged as a promising approach for treating complex diseases, particularly cancer. However, predicting the efficacy and safety profiles of these therapies remains a significant challenge, primarily because of the complex interactions among drugs and their wide-ranging effects. To address this issue, we introduce DD-PRiSM (Decomposition of Drug-Pair Response into Synergy and Monotherapy effect), a deep-learning pipeline that predicts the effects of combination therapy. DD-PRiSM consists of two predictive models. The first is the Monotherapy model, which predicts parameters of the drug response curve based on drug structure and cell line gene expression. This reconstructed curve is then used to predict cell viability at the given drug dosage. The second is the Combination therapy model, which predicts the efficacy of drug combinations by analyzing individual drug effects and their synergistic interactions with a specific dosage level of individual drugs. The efficacy of DD-PRiSM is demonstrated through its performance metrics, achieving a root mean square error of 0.0854, a Pearson correlation coefficient of 0.9063, and an R2 of 0.8209 for unseen pairs. Furthermore, DD-PRiSM distinguishes itself by its capability to decompose combination therapy efficacy, successfully identifying synergistic drug pairs. We demonstrated synergistic responses vary across cancer types and identified hub drugs that trigger synergistic effects. Finally, we suggested a promising drug pair through our case study. © The Author(s) 2025.
Author(s)
Jin, IljungLee, SongyeonSchmuhalek, MartinNam, Hojung
Issued Date
2025-01
Type
Article
DOI
10.1093/bib/bbae717
URI
https://scholar.gist.ac.kr/handle/local/9093
Publisher
Oxford University Press
Citation
Briefings in Bioinformatics, v.26, no.1
ISSN
1467-5463
Appears in Collections:
Department of Electrical Engineering and Computer Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.