OAK

Sustainable Removal of Aqueous Hg(II) by Zeolitic Imidazolate Framework-Derived Co/NC Using Optimized Thermal Desorption

Metadata Downloads
Abstract
The effectiveness of materials in aqueous contaminant treatment technologies by sorptive removal relies on their ability to be reused and their removal efficiency. Thermal desorption stands out as a promising method to improve the reusability of these materials. In this study, Zeolitic Imidazolate Framework-67 (ZIF-67) derived Cobalt N-Doped Carbon (Co/NC) and metal-impregnated (Ru, Pt, and Pd) Co/NC nanoparticles have been synthesized and tested for the effective removal of aqueous Hg(II) and its reusability by thermal desorption. Reduced Co/NC efficiently removed Hg(II), adsorbing 99.9% of aqueous Hg(II) in 2.5 min through pyridinic-N adsorption sites and Co0 reducing Hg(0) on the surface. The testing of various metals (Ru, Pt, and Pd) on the surface of Co/NC showed that Pd(4%)-Co/NC achieved the highest reactivity with a maximum adsorption capacity of 49.93 mgg-1 using the Langmuir model. Pd(8%)-Co/NC showed the highest adsorbed Hg(0) (79.1%) and fastest removal kinetics (135.52 g mg-1 min-1). The Pd(4%)-Co/NC catalyst retained its durability and stability, eliminating 99.9% of the aqueous Hg species throughout 10 consecutive cycles. The 80.11% and 85.4% of adsorbed Hg were recovered by thermal desorption at 500 °C on Pd(4%)-Co/NC and Co/NC surfaces, respectively. Pd(4%)-Co/NC displayed notable promise as a sustainable catalyst for Hg(II) reductive removal in wastewater treatment technologies, emphasizing its enduring effectiveness and reuse potential for practical engineering applications. © 2025 The Authors. Published by American Chemical Society.
Author(s)
Nurmyrza, MeiirzhanHan, SeungheeLee, Woojin
Issued Date
2025-01
Type
Article
DOI
10.1021/acsestengg.4c00626
URI
https://scholar.gist.ac.kr/handle/local/9078
Publisher
American Chemical Society
Citation
ACS ES and T Engineering, v.5, no.3, pp.678 - 690
ISSN
2690-0645
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.