OAK

Neustonic zooplankton communities across distinct summer water masses in the northern East China Sea

Metadata Downloads
Abstract
Marine neustonic zooplankton are subject to extreme fluctuations in environmental conditions, including water temperature, salinity, and ocean currents. This study examined the community structure of neustonic zooplankton, focusing on copepods, across distinct continental shelf water masses in the northern East China Sea, where coastal and oceanic waters converge. Neustonic zooplankton samples were collected using a neuston net from three regions surrounding Jeju Island, Korea, during June, August, and September 2021. Environmental parameters, such as water temperature, salinity, size-fractioned chlorophyll a concentrations, and suspended particulate matter, were measured. The neustonic copepod community in each region was categorized into two groups based on water masses: Yangtze River Diluted Water (YRDW) versus the remaining shelf water in June; YRDW versus Tsushima Warm Current (TWC) in August; and mixed waters (South Korean Coastal Water, SKCW) versus TWC in September. The spatial distribution of neustonic zooplankton was primarily influenced by distinct water masses. Coastal indicator species (Paracalanus parvus sensu lato (s. l.), Labidocera rotunda, and Ditrichocorycaeus affinis) were significantly correlated with chlorophyll a concentrations in YRDW and SKCW, conversely, water temperature and salinity were closely associated with the abundance of high-salinity indicator species (Canthocalanus pauper, Temora discaudata, Centropages furcatus, and Undinula vulgaris) in the TWC. Additionally, oceanic indicator species correlated with multiple environmental factors across all water masses. These findings suggest that, during summer, the inflow of YRDW influences the spatial conditions in the study area. Moreover, indicator species can serve as valuable markers of water mass fluctuations. © 2025 Elsevier Ltd
Author(s)
Choi, Jang HanKim, GeonKang, YoonjaKang, Chang-KeunKim, TaejinSoh, Ho Young
Issued Date
2025-05
Type
Article
DOI
10.1016/j.marenvres.2025.107088
URI
https://scholar.gist.ac.kr/handle/local/8961
Publisher
Elsevier Ltd
Citation
Marine Environmental Research, v.207
ISSN
0141-1136
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.