OAK

Regeneration of dialysis solution by dual-layer hollow fiber mixed matrix membrane (DLHF-MMM) incorporated with amine-functionalized mesoporous silica nanoparticles

Metadata Downloads
Abstract
A large amount of purified water is used in conventional hemodialysis (HD) for treating end-stage kidney disease (ESKD). To minimize the water demand and waste generation, the regeneration of dialysis solution is considered the most efficient control strategy. In this study, an innovative dual-layer hollow fiber (DLHF) mixed matrix membrane (MMM) incorporated with amine-functionalized mesoporous silica nanoparticles (MPS-NPs) was developed to regenerate spent dialysis solution. The fabricated DLHF-MMM configuration enabled the continuous removal of small, medium, and large weight uremic toxins (UTs) through dual mechanisms. The inner layer composed of polyethersulfone (PES) and polyethylene glycol (PEG) rejected medium-large weight UTs (i.e., MW > 500 Da) via the molecular sieving. Meanwhile, the outer layer containing amine-functionalized MPS-NPs effectively removed small weight UTs, such as urea and creatinine. The DLHF-MMM with 6 wt% of amine-functionalized MPS-NPs demonstrated the most favorable characteristics, i.e., high water permeability (298.6 ± 3.2 mL/m2.h.mmHg) and adsorption capacity of urea (523.5 mg/g) and creatinine (28.1 mg/g). Notably, the optimal membrane (DLHF-4) also achieved favorable removal rates from the spent dialysis solution of actual patient, i.e., urea (74.4 %), creatinine (56 %), hippuric acid (16.1 %), and lysozyme (58.7 %, additionally spiked as a mimicking for β-2 microglobulin). These results indicate that the fabricated DLHF-MMM in this study can effectively overcome the challenges posed by the complex matrix components. Overall, the results of this study demonstrate that the DLHF-MMM incorporated with amine-functionalized MPS-NPs is a promising and potential tool for the regeneration of dialysis solution. Furthermore, this approach can contribute to water conservation and reduce the burden on wastewater treatment processes associated with wastewater generated from conventional HD. © 2025 Elsevier Ltd
Author(s)
Le-Thi, Anh-DaoYang, EunmokNguyen-Thi, Kim-SinhKim, Soo WanChoi, HeechulKim, In S.
Issued Date
2025-07
Type
Article
DOI
10.1016/j.watres.2025.123469
URI
https://scholar.gist.ac.kr/handle/local/8951
Publisher
Elsevier Ltd
Citation
Water Research, v.280
ISSN
0043-1354
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.