OAK

Optimal scheduling of distributed energy resources in residential building under the demand response commitment contract

Metadata Downloads
Abstract
This study proposes optimal day-ahead demand response (DR) participation strategies and distributed energy resource (DER) management in a residential building under an individual DR contract with a grid-system operator. First, this study introduces a DER management system in the residential building for participation to the day-ahead DR market. The distributed photovoltaic generation system (PV) and energy-storage system (ESS) are applied to reduce the electricity demand in the building and sell surplus energy on the grid. Among loads in the building, lighting (LTG) and heating, ventilation, and air conditioning (HVAC) loads are included in the DR program. In addition, it is assumed that a power management system of an electric vehicle (EV) charging station is integrated the DER management system. In order to describe stochastic behavior of EV owners, the uncertainty of EV is formulated based on their arrival and departure scenarios. For measuring the economic efficiency of the proposed model, we compare it with the DER self-consuming operation model without DR participation. The problem is solved using mixed integer linear programming to minimize the operating cost. The results in summer and winter are analyzed to evaluate the proposed algorithm’s validity. From these results, the proposed model can be confirmed as reducing operation cost compared to the reference model through optimal day-ahead DR capacity bidding and implementation.
Author(s)
Baek, KeonKo, WoongKim, Jinho
Issued Date
2019-07
Type
Article
DOI
10.3390/en12142810
URI
https://scholar.gist.ac.kr/handle/local/8873
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Citation
Energies, v.12, no.14
ISSN
1996-1073
Appears in Collections:
Department of Electrical Engineering and Computer Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.