OAK

Modeling and Simulation of Concentrated Aqueous Solutions of LiTFSI for Battery Applications

Metadata Downloads
Abstract
We propose a new nonpolarizable molecular mechanics force field for concentrated aqueous solutions of lithium bistriflylimide (LiTFSI), a promising candidate for battery applications. The model describes the TFSI anion by GAFF2-based Lennard-Jones parameters and new MP2-optimized intramolecular parameters. They are combined with existing models of Li+ and water (TIP4P-Ew). The charge transfer and electronic polarization effects between oppositely charged ions, depicted with ionic charge scaling by 0.8 in the present model, turn out to be crucial for the correct prediction of solution density and diffusivity of ions and water molecules over the concentration range from 1 to 21 m. Molecular dynamics simulations using this new model reveal that TFSI- interacts with Li+ predominantly through its sulfonyl oxygens (O-T) and that O-T can readily form hydrogen bonds (H-bonds) with water molecules. Moreover, a single Li+ is, on average, coordinated by approximately four oxygen atoms, either O-T or O-W, at all concentrations studied. These observations indicate that the extended and heterogeneous H-bond network formed by water and O-T facilitates the solvation and ion conduction of Li+ in concentrated aqueous solutions of LiTFSI. The present modeling approach is applicable to a wide range of electrolyte solutions.
Author(s)
Jeon, JongguLee, HochanChoi, Jun-HoCho, Minhaeng
Issued Date
2020-06
Type
Article
DOI
10.1021/acs.jpcc.0c02187
URI
https://scholar.gist.ac.kr/handle/local/8770
Publisher
American Chemical Society
Citation
Journal of Physical Chemistry C, v.124, no.22, pp.11790 - 11799
ISSN
1932-7447
Appears in Collections:
Department of Chemistry > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.