OAK

First attempt of global-scale assimilation of subdaily scale soil moisture estimates from CYGNSS and SMAP into a land surface model

Metadata Downloads
Abstract
Soil moisture performs a key function in the hydrologic process and understanding the global-scale water cycle. However, estimations of soil moisture taken from current sun-synchronous orbit satellites are limited in that they are neither spatially nor temporally continuous. This limitation creates discontinuous soil moisture observation from space and hampers our understanding of the fundamental processes that control the surface hydrologic cycle across both time and space domains. Here, we propose to use frequent soil moisture observations from NASA's constellation of eight micro-satellites called the Cyclone Global Navigation Satellite System (CYGNSS) together with the Soil Moisture Active Passive (SMAP) to assimilate subdaily scale soil moisture into a land surface model (LSM). Our results, which are based on triple collocation analysis (TCA), show how current scientific advances in satellite systems can fill previous gaps in soil moisture observations in subdaily scale by past observations, and eventually adds value to improvements in global scale soil moisture estimates in LSMs. Overall, TCA-based fractional mean square errors of LSM soil moisture are improved by 61.3% with the synergetic assimilation of CYGNSS data with SMAP soil moisture observations. However, assimilating satellite-based soil moisture over dense vegetation areas can degrade the performance of LSMs as these areas propagate erroneous soil moisture information to LSMs. To our knowledge, this study is the first global assimilation of GNSS-based soil moisture observations in LSMs.
Author(s)
Kim HyunglokLakshmi VenkataramanKwon YonghwanKumar Sujay V
Issued Date
2021-07
Type
Article
DOI
10.1088/1748-9326/ac0ddf
URI
https://scholar.gist.ac.kr/handle/local/8721
Publisher
IOP Publishing Ltd
Citation
ENVIRONMENTAL RESEARCH LETTERS, v.16, no.7
ISSN
1748-9326
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.