OAK

Electrochemical defect control of bulky crystalline CuBi2O4 film and the band edge alignment for photoelectrochemical water reduction

Metadata Downloads
Author(s)
Sakthivel PerumalThandapani MarimuthuTaewaen LimSeo, Junhyeok
Type
Article
Citation
Applied Surface Science, v.679, pp.161166
Issued Date
2025-01
Abstract
Hetero-metal oxides have been used in photoelectrochemical (PEC) water splitting systems, but synthetic-originating defects and charge recombination process degrades PEC cell performance. Herein, we studied intrinsic physical properties of pure-phase copper bismuth oxide (CuBi2O4, CBO) photocathode through controlling defects and band edge alignment. Preparation of pure-phase CBO film with large grain sizes (average similar to 290 nm) enabled to investigate the correlation between CBO's crystal structure and charge carrier transport efficiency. The Cu1+-V-o point defects were regulated through electrochemical oxidation or thermal oxygenation under argon, air, and O-2 atmosphere. The thermal treatment in an O-2-saturated environment significantly reduced Cu1+-V-o defects, increasing charge carrier density, thereby reducing band gap, which eventually facilitated the charge transport. Moreover, electrochemical oxidation produced similar band structure to thermal oxygenation under O-2, demonstrating a high level of Cu1+ defect control could be achieved through electrochemical oxidation as well as thermal oxygenation, showing systematic adjustment of the CBO band edge. Additionally, the hole-transfer heterojunction at the CBO film's back side was engineered using copper oxide (CuO) thin film for interfacial band alignment. As a result, band edge-aligned FTO|CuO|CBO heterojunction exhibited a remarkably increased photocurrent density up to 2.63 mA/ cm(2) at 0.4 V vs. RHE in alkaline electrolyte.
Publisher
ELSEVIER
ISSN
0169-4332
DOI
10.1016/j.apsusc.2024.161166
URI
https://scholar.gist.ac.kr/handle/local/8570
Appears in Collections:
Department of Chemistry > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.