OAK

Elite Episode Replay Memory for Polyphonic Piano Fingering Estimation

Metadata Downloads
Author(s)
Iman, Ananda PhanAhn, Chang Wook
Type
Article
Citation
MATHEMATICS, v.13, no.15
Issued Date
2025-08
Abstract
Piano fingering estimation remains a complex problem due to the combinatorial nature of hand movements and no best solution for any situation. A recent model-free reinforcement learning framework for piano fingering modeled each monophonic piece as an environment and demonstrated that value-based methods outperform probability-based approaches. Building on their finding, this paper addresses the more complex polyphonic fingering problem by formulating it as an online model-free reinforcement learning task with a novel training strategy. Thus, we introduce a novel Elite Episode Replay (EER) method to improve learning efficiency by prioritizing high-quality episodes during training. This strategy accelerates early reward acquisition and improves convergence without sacrificing fingering quality. The proposed architecture produces multiple-action outputs for polyphonic settings and is trained using both elite-guided and uniform sampling. Experimental results show that the EER strategy reduces training time per step by 21% and speeds up convergence by 18% while preserving the difficulty level and result of the generated fingerings. An empirical study of elite memory size further highlights its impact on training performance in solving piano fingering estimation.
Publisher
MDPI
ISSN
2227-7390
DOI
10.3390/math13152485
URI
https://scholar.gist.ac.kr/handle/local/31704
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.