OAK

Mechanically Robust Silver Nanowires Network for Triboelectric Nanogenerators

Metadata Downloads
Author(s)
Kang HyungseokKim HanKim SeongsuShin Hyeon JinCheon SiukHuh Ji-HyeokLee Dong YunLee SeungwooKim Sang-WooCho Jeong Ho
Type
Article
Citation
ADVANCED FUNCTIONAL MATERIALS, v.26, no.42, pp.7717 - 7724
Issued Date
2016-11
Abstract
The authors develop a mechanically robust silver nanowires (AgNWs) electrode platform for use in flexible and stretchable triboelectric nanogenerators (TENGs). The embedding of an AgNWs network into a photocurable or thermocurable polymeric matrix dramatically enhances the mechanical robustness of the flexible and stretchable TENG electrodes while maintaining a highly efficient triboelectric performance. The AgNWs/polymeric matrix electrode is fabricated in four steps: (i) the AgNWs networks are formed on a hydrophobic glass substrate; (ii) a laminating photocurable or thermocurable prepolymer film is applied to the developed AgNWs network; (iii) the polymeric matrix is crosslinked by UV exposure or thermal treatment; and (iv) the AgNWs-embedded polymeric matrix is delaminated from the glass substrate. The AgNWs-embedded polymeric matrix electrodes with four different sheet resistances, controlled by varying the AgNWs network deposition density, are deployed in TENG devices. The authors find that the potential difference between the two contact surfaces of the AgNWs network-embedded polymer matrix electrodes and the nylon (or perfluoroalkoxy alkane) governs the output triboelectric performances of the devices, rather than the sheet resistance. Both Kelvin probe force microscopy and numerical simulations strongly support these observations.
Publisher
WILEY-V C H VERLAG GMBH
ISSN
1616-301X
DOI
10.1002/adfm.201603199
URI
https://scholar.gist.ac.kr/handle/local/31671
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.