OAK

3D and appearance modeling from images

Metadata Downloads
Author(s)
Sturm, PeterDelaunoy, AmaëlGargallo, PauPrados, EmmanuelYoon, Kuk-Jin
Type
Conference Paper
Citation
14th Iberoamerican Conference on Pattern Recognition, CIARP 2009, pp.695 - 704
Issued Date
2009-11
Abstract
This paper gives an overview of works done in our group on 3D and appearance modeling of objects, from images. The backbone of our approach is to use what we consider as the principled optimization criterion for this problem: to maximize photoconsistency between input images and images rendered from the estimated surface geometry and appearance. In initial works, we have derived a general solution for this, showing how to write the gradient for this cost function (a non-trivial undertaking). In subsequent works, we have applied this solution to various scenarios: recovery of textured or uniform Lambertian or non-Lambertian surfaces, under static or varying illumination and with static or varying viewpoint. Our approach can be applied to these different cases, which is possible since it naturally merges cues that are often considered separately: stereo information, shading, silhouettes. This merge naturally happens as a result of the cost function used: when rendering estimated geometry and appearance (given known lighting conditions), the resulting images automatically contain these cues and their comparison with the input images thus implicitly uses these cues simultaneously. © 2009 Springer-Verlag Berlin Heidelberg.
Publisher
Springer-Verlag Berlin Heidelberg
Conference Place
MX
URI
https://scholar.gist.ac.kr/handle/local/25353
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.