OAK

Silicon photonic MEMS variable optical attenuator

Metadata Downloads
Abstract
We present a design for an on-chip MEMS-actuated Variable Optical Attenuator (VOA) based on Silicon Photonic MEMS technology. The VOA consists of 30 individual mechanically movable MEMS cantilevers, suspended over an integrated, 1 μm wide bus waveguide, each terminating with two optical attenuation bars. By exploiting the pull-in instability, electrostatic actuation allows to move the individual cantilevers into proximity of the waveguide, leading to scattering of the evanescent field and thus attenuation of the remaining optical power in the waveguide. Electrodes are placed below the cantilevers for electrostatic actuation. Mechanical stoppers are used to avoid contact between the cantilevers and the electrodes and to keep the bars at a precisely defined distance of 60 nm away from the bus waveguide. The attenuator provides nearly zero insertion loss in OFF state, while in ON state, the attenuation range is defined by the number of actuated digital attenuation cantilevers and can be adjusted in discrete increments of only 1.2 dB. Owing to the small size, fast microsecond scale response time can be achieved, and electrostatic MEMS actuation allows for broadband and low-power operation. Our design exhibits a compact footprint of 30 μm × 45 μm, attenuation from 0 dB to 36 dB, while keeping return loss below 27 dB. To the best of our knowledge, this is the first presentation of a design of a VOA in Silicon Photonic MEMS technology.
Author(s)
Teodoro GraziosiHamed SattariSeok, Tae JoonSangyoon HanMing C. WuNiels Quack
Issued Date
2018-01
Type
Conference Paper
URI
https://scholar.gist.ac.kr/handle/local/20062
Publisher
SPIE
Citation
SPIE Photonics WEST
Conference Place
US
Appears in Collections:
Department of Electrical Engineering and Computer Science > 2. Conference Papers
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.