OAK

Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell

Metadata Downloads
Abstract
A thermophilic mediatorless microbial fuel cell (ML-MFC) was developed for continuous electricity production while treating artificial wastewater concurrently. A maximum power density of 1030 +/- 340 mW/m(2) was generated continuously at 55 degrees C with an anode retention time of 27 min (11 mL h(-1)) and continuous pumping of air-saturated phosphate buffer into the cathode compartment at the retention time of 0.7 min (450 mL h(-1)). Meanwhile, about 80% of the electrons available from acetate oxidation were recovered as current. Denaturing gradient gel electrophoresis (DGGE) and direct 16S-rRNA gene analysis revealed that the bacterial diversity in this ML-MFC system was lower than the inoculum. Direct 16S rDNA analysis showed that the dominant bacteria representing 57.8% of total population in anode compartment was phylogenetically very closely related to an uncultured clone, clone E4. Two sheets of graphite used as the anode showed different dominant bacterial population. For the first time, it is shown that thermophilic electrochemically active bacteria can be enriched to concurrently generate electricity and treat artificial wastewater in a thermophilic ML-MFC.
Author(s)
Jong, Bor ChyanKim, Byung HongChang, In SeopLiew, Pauline Woan YingChoo, Yeng FungKang, Gi Su
Issued Date
2006-10
Type
Article
DOI
10.1021/es0613512
URI
https://scholar.gist.ac.kr/handle/local/17823
Publisher
American Chemical Society
Citation
Environmental Science and Technology, v.40, no.20, pp.6449 - 6454
ISSN
0013-936X
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.