OAK

Determination of lead in soil at a historical mining and smelting site using laser-induced breakdown spectroscopy

Metadata Downloads
Abstract
Laser-induced breakdown spectroscopy (LIBS) was used to determine lead (Pb) concentration in soil and tailing samples collected from a historical mining and smelting area. The Pb emission line at 405.781 nm was found to have the strongest intensity and highest linearity with concentration. It was further normalized by the Al emission line (394.401 nm), and a relationship between the peak area ratio (Pb/Al) and Pb concentration was established to determine Pb concentration of unknown samples. The Pb concentration was the highest at the former smelter site and unremediated mine-tailing areas, indicating that severe Pb contamination is still occurring. The Pb concentration decreased with increasing distance from the two major source areas (smelting and mine-tailing sites), although all samples exceeded the 400 mg/kg standard set by the United States Environmental Protection Agency. The limit of detection (LOD) for Pb was found to be 48 mg/kg, and the Pb concentrations determined by LIBS were in reasonable agreement with concentrations obtained by inductively coupled plasma mass spectroscopy (ICP-MS; within 26%). When Pb concentrations were determined by calibration-free (CF)-LIBS, which does not require standard soil samples and dilution, both LIBS and ICP-MS were also in good agreement, suggesting that the CF-LIBS method can be used to determine Pb concentrations in highly contaminated soil samples. In addition to Pb, other metal emission lines from LIBS spectra were used to classify soil samples among the sites using a principal component analysis (PCA) method, showing a distinct difference in metal distribution between sites that are heavily contaminated by two major sources.
Author(s)
Kwak, JihyunKim, Kyoung-WoongPark, MiyeonKim, JuyongPark, Kihong
Issued Date
2012-09
Type
Article
DOI
10.1080/09593330.2012.665485
URI
https://scholar.gist.ac.kr/handle/local/15845
Publisher
TAYLOR & FRANCIS LTD
Citation
ENVIRONMENTAL TECHNOLOGY, v.33, no.18, pp.2177 - 2184
ISSN
0959-3330
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.