Classification of road surface status using a 94 GHz dual-channel polarimetric radiometer
- Abstract
- In this article, we classify road surface statuses using a Bayesian classification method. This article uses principal component analysis (PCA) that combines a 94 GHz dual-channel polarimetric radiometer. The radiometer is used to investigate the behaviour of the brightness temperature (BT) of different road surface statuses in an open-air laboratory. The aim of this investigation is to characterize four different road surface classes (dry, wet, snowy and icy). Here, the BT (radiothermal emission) characteristics are measured at horizontal and vertical polarizations. For a given database of weather information (including BT, road surface temperature, wind speed, etc.), a PCA subspace is constructed, and the score vectors are classified by solving the Bayesian classification method. As a result, the road surface statuses were found to be well classified by the proposed method in real time.
- Author(s)
- Song, Il Young; Yoon, Ju Hong; Bae, Seung Hwan; Jeon, Moongu; Shin, Vladimir
- Issued Date
- 2012-12
- Type
- Article
- DOI
- 10.1080/01431161.2012.671554
- URI
- https://scholar.gist.ac.kr/handle/local/15740
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.