Generation of intense coherent attosecond X-ray pulses using relativistic electron mirrors
- Abstract
- We analyse the steepening of the leading edge of femtosecond petawatt pulses with the use of plasma layers and show that, at an electron density several times higher than the critical one, an asymmetric (in time domain) pulse can be produced with an amplitude of the first half-wave differing little from the maximum pulse amplitude. Using numerical simulation, we have studied the interaction of such pulses with nanometre-thick films, including the generation of relativistic electron mirrors and the reflection of a counterpropagating probe pulse from such mirrors. The resulting coherent X-ray pulses have a duration of similar to 120 as and a power of similar to 600 GW at a wavelength of similar to 13 nm. Our results demonstrate that the reflectivity of a relativistic electron mirror situated in the accelerating pulse field is independent of the probe pulse amplitude when it increases up to the accelerating pulse amplitude.
- Author(s)
- Kulagin, V. V.; Kornienko, V. N.; Cherepenin, V. A.; Suk, Hy Young
- Issued Date
- 2013-01
- Type
- Article
- DOI
- 10.1070/QE2013v043n05ABEH015040
- URI
- https://scholar.gist.ac.kr/handle/local/15695
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.