OAK

Magnetic penetration depth in single crystals of SrPd2Ge2 superconductor

Metadata Downloads
Abstract
The in-plane magnetic penetration depth lambda(m)(T) was measured in a single crystal of SrPd2Ge2 superconductor in a dilution refrigerator down to T = 60 mK and in magnetic fields up to H-dc = 1 T by using a tunnel diode resonator. The London penetration depth lambda saturates exponentially approaching T -> 0 indicating fully gapped superconductivity. The thermodynamic Rutgers formula was used to estimate lambda(0) = 426 +/- 60 nm which was used to calculate the superfluid density, rho(s)(T) = lambda(2)(0)/lambda(2)(T). Analysis of rho(s)(T) in the full temperature range shows that it is best described by a single-gap behavior, perhaps with somewhat stronger coupling. In a magnetic field, the measured penetration depth is given by the Campbell penetration depth which was used to calculate the theoretical critical current density j(c). For H <= 0.45 T, the strongest pinning is achieved not at the lowest, but at some intermediate temperature, probably due to matching effect between temperature-dependent coherence length and relevant pinning length scale. Finally, we find compelling evidence for surface superconductivity. Combining all measurements, the entire H-T phase diagram of SrPd2Ge2 is constructed with an estimated H-c2(0) = 0.4817 T. DOI: 10.1103/PhysRevB.87.094515
Author(s)
Kim, H.Sung, N. H.Cho, BeongkiTanatar, M. A.Prozorov, R.
Issued Date
2013-01
Type
Article
DOI
10.1103/PhysRevB.87.094515
URI
https://scholar.gist.ac.kr/handle/local/15692
Publisher
American Physical Society
Citation
PHYSICAL REVIEW B, v.87, no.9
ISSN
1098-0121
Appears in Collections:
Department of Materials Science and Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.