OAK

Impact of Stoichiometry on the Electronic Structure of PbS Quantum Dots

Metadata Downloads
Abstract
Although the stoichiometry of bulk lead sulfide (PbS) is exactly 1: 1, that of quantum dots (QDs) can be considerably different from this crystalline limit. Employing first-principles calculations, we show that the impact of PbS QD stoichiometry on the electronic structure can be enormous, suggesting that control over the overall stoichiometry in the QD will play a critical role for improving the efficiency of optoelectronic devices made with PbS QDs. In particular, for bare PbS QDs, we find that: (i) stoichiometric PbS QDs are free from midgap states even without ligand passivation and independent of shape, (ii) off stoichiometry in PbS QDs introduces new states in the gap that are highly localized on certain surface atoms, and (iii) further deviations in stoichiometry lead to QDs with "metallic" behavior, with a dense number of energy states near the Fermi level. We further demonstrate that this framework holds for the case of passivated QDs by considering the attachment of ligand molecules as stoichiometry variations. Our calculations show that an optimal number of ligands makes the QD stoichiometric and heals unfavorable electronic structure, whereas too few or too many ligands cause effective off stoichiometry, resulting in QDs with defect states in the gap.
Author(s)
Kim, DonghunKim, Dong-HoLee, Joo-HyoungGrossman, Jeffrey C.
Issued Date
2013-05
Type
Article
DOI
10.1103/PhysRevLett.110.196802
URI
https://scholar.gist.ac.kr/handle/local/15562
Publisher
American Physical Society
Citation
PHYSICAL REVIEW LETTERS, v.110, no.19
ISSN
0031-9007
Appears in Collections:
Department of Materials Science and Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.