Characterization of a Self-sufficient Trans-Anethole Oxygenase from Pseudomonas putida JYR-1
- Abstract
- A novel flavoprotein monooxygenase, trans-anethole oxygenase (TAO), from Pseudomonas putida JYR-1, which is capable of catalyzing the oxidation of trans-anethole to p-anisaldehyde, was heterologously expressed in E. coli and purified. Enzymatic kinetics of diverse substrates and cofactors revealed that TAO is likely to be a novel self-sufficient flavoprotein monooxygenase. Enzyme assays of GST-TAO demonstrated that TAO catalyzed a trans-anethole oxidation reaction without auxiliary component enzyme-like electron-transfer flavin reductases. The single component TAO had the ability to reduce flavin cofactors and simultaneously oxidize trans-anthole to p-anisaldehyde. In the processes of reduction of flavin and oxidation of trans-anethole, TAO accepted various flavin and NAD(P)H cofactors. TAO also catalyzed oxidation of isoeugenol, O-methyl isoeugenol, and isosafrole, all of which contain the 2-propenyl functional group on the aromatic ring structure with different catalytic efficiency. TAO had the greatest catalytic efficiency (k(cat)/K-m) with the original substrate, trans-anethole. Investigation about partially deleted mutants of TAO indicated that reductase active sites appeared to be located near the N terminal. Site directed mutagenesis studies also proved that the proposed flavin binding sites, Trp-38, Thr-43, Tyr-55, were critical for flavin reduction. However, disruption of any portion of TAO eliminated the oxygenase activity.
- Author(s)
- Han, Dongfei; Sadowsky, Michael J.; Chong, Youhoon; Hur, Hor-Gil
- Issued Date
- 2013-09
- Type
- Article
- DOI
- 10.1371/journal.pone.0073350
- URI
- https://scholar.gist.ac.kr/handle/local/15451
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.