OAK

Effects of azide on electron transport of exoelectrogens in air-cathode microbial fuel cells

Metadata Downloads
Author(s)
Zhou, XiangtongQu, YoupengKim, Byung HongChoo, Pamela YengfungLiu, JiaDu, YueHe, WeihuaChang, In SeopRen, NanqiFeng, Yujie
Type
Article
Citation
BIORESOURCE TECHNOLOGY, v.169, pp.265 - 270
Issued Date
2014-10
Abstract
The effects of azide on electron transport of exoelectrogens were investigated using air-cathode MFCs. These MFCs enriched with azide at the concentration higher than 0.5 mM generated lower current and coulomb efficiency (CE) than the control reactors, but at the concentration lower than 0.2 mM MFCs generated higher current and CE. Power density curves showed overshoot at higher azide concentrations, with power and current density decreasing simultaneously. Electrochemical impedance spectroscopy (EIS) showed that azide at high concentration increased the charge transfer resistance. These analyses might reflect that a part of electrons were consumed by the anode microbial population rather than transferred to the anode. Bacterial population analyses showed azide-enriched anodes were dominated by Deltaproteobacteria compared with the controls. Based on these results it is hypothesized that azide can eliminate the growth of aerobic respiratory bacteria, and at the same time is used as an electron acceptor/sink. (C) 2014 Elsevier Ltd. All rights reserved.
Publisher
ELSEVIER SCI LTD
ISSN
0960-8524
DOI
10.1016/j.biortech.2014.07.012
URI
https://scholar.gist.ac.kr/handle/local/15017
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.