OAK

GaP-ZnS Pseudobinary Alloy Nanowires

Metadata Downloads
Author(s)
Park, KidongLee, Jung AhIm, Hyung SoonJung, Chan SuKim, Han SungPark, JeungheeLee, Chang-Lyoul
Type
Article
Citation
NANO LETTERS, v.14, no.10, pp.5912 - 5919
Issued Date
2014-10
Abstract
Multicomponent nanowires (NWs) are of great interest for integrated nanoscale optoelectronic devices owing to their widely tunable band gaps. In this study, we synthesize a series of (GaP)(1x)(ZnS)(x) (0 = x = 1) pseudobinary alloy NWs using the vapor transport method. Compositional tuning results in the phase evolution from the zinc blende (ZB) (x < 0.4) to the wurtzite (WZ) phase (x > 0.7). A coexistence of ZB and WZ phases (x = 0.40.7) is also observed. In the intermediate phase coexistence range, a coreshell structure is produced with a composition of x = 0.4 and 0.7 for the core and shell, respectively. The band gap (2.43.7 eV) increases nonlinearly with increasing x, showing a significant bowing phenomenon. The phase evolution leads to enhanced photoluminescence emission. Strikingly, the photoluminescence spectrum shows a blue-shift (70 meV for x = 0.9) with increasing excitation power, and a wavelength-dependent decay time. Based on the photoluminescence data, we propose a type-II pseudobinary heterojunction band structure for the single-crystalline WZ phase ZnS-rich NWs. The slight incorporation of GaP into the ZnS induces a higher photocurrent and excellent photocurrent stability, which opens up a new strategy for enhancing the performance of photodetectors.
Publisher
AMER CHEMICAL SOC
ISSN
1530-6984
DOI
10.1021/nl5028843
URI
https://scholar.gist.ac.kr/handle/local/15008
Appears in Collections:
ETC > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.