Stable charge storing in two-dimensional MoS2 nanoflake floating gates for multilevel organic flash memory
- Abstract
- In this study, we investigated chemically exfoliated two-dimensional (2-D) nanoflakes of molybdenum disulfide (MoS2) as charge-storing elements for use in organic multilevel memory devices (of the printed/flexible non-volatile type) based on organic field-effect transistors (OFETs) containing poly(3-hexylthiophene) (P3HT). The metallic MoS2 nanoflakeswere exfoliated in 2-methoxyethanol by the lithium intercalation method and were deposited as nano-floating gates between polystyrene and poly(methyl methacrylate), used as bilayered gate dielectrics, by a simple spin-coating and low temperature (<150 degrees C) process. In the developed OFET memory devices, electrons could be trapped/detrapped in the MoS2 nano-floating gates by modulating the charge carrier density in the active channel through gate bias control. Optimal memory characteristics were achieved by controlling the thickness and concentration of few-layered MoS2 nanoflakes, and the best device showed reliable non-volatile memory properties: a sufficient memory window of similar to 23 V, programming-reading-erasing cycling endurance of >10(2) times, and most importantly, quasi-permanent charge-storing characteristics, i.e., a very long retention time (longer than the technological requirement of commercial memory devices (>10 years)). In addition, we successfully developed multilevel memory cells (2 bits per cell) by controlling the gate bias magnitude.
- Author(s)
- Kang, Minji; Kim, Yeong-A.; Yun, Jin-Mun; Khim, Dongyoon; Kim, Jihong; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu
- Issued Date
- 2014-11
- Type
- Article
- DOI
- 10.1039/c4nr03448a
- URI
- https://scholar.gist.ac.kr/handle/local/14986
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.