OAK

Fluorescence imaging for biofoulants detection and monitoring of biofouled strength in reverse osmosis membrane

Metadata Downloads
Abstract
Biofouling is a crucial issue, and it causes seawater reverse osmosis membrane to deteriorate the performance of desalination. In this study, excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC) were used to monitor the strength of biofouling on the fouled membrane which was obtained from real plant. Based on EEM and PARAFAC results of raw seawater, feed water, permeate, brine and fouled membrane, three components were identified as the major peaks: (1) microbial product-like materials at Ex/Em = 280/370 nm, (2) humic-like substances at Ex/Em = 330/420 nm, and (3) aromatic proteins at Ex/Em = 240/320 nm. Using the fluorescence intensity changes, the effects of replacing fouled RO membranes were found to be most significant at one of the components (Ex/Em = 270-300/350-380 nm) which could be considered the substances desorbed from fouled RO membrane. Compared to the data for salt rejection, this component monitoring of the brine EEM image is shown to be more sensitive than conductivity monitoring for predicting the biofouling strength during the desalination process.
Author(s)
Choi, JinheeChoi, WooyeolKim, HyunjungAlaud-din, AamirCho, Kyung HwaKim, Joon HaLim, HyukLovitt, Robert W.Chang, In Seop
Issued Date
2014-12
Type
Article
DOI
10.1039/c3ay40870a
URI
https://scholar.gist.ac.kr/handle/local/14952
Publisher
Royal Society of Chemistry
Citation
Analytical Methods, v.6, no.4, pp.993 - 1000
ISSN
1759-9660
Appears in Collections:
Department of AI Convergence > 1. Journal Articles
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.