OAK

Neuromorphic Hardware System for Visual Pattern Recognition With Memristor Array and CMOS Neuron

Metadata Downloads
Author(s)
Chu, MyonglaeKim, ByounghoPark, SangsuHwang, HyunsangJeon, MoonguLee, Byoung HunLee, Byung-geun
Type
Article
Citation
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, v.62, no.4, pp.2410 - 2419
Issued Date
2015-04
Abstract
This paper presents a neuromorphic system for visual pattern recognition realized in hardware. A new learning rule based on modified spike-timing-dependent plasticity is also presented and implemented with passive synaptic devices. The system includes an artificial photoreceptor, a Pr0.7Ca0.3MnO3-based memristor array, and CMOS neurons. The artificial photoreceptor consisting of a CMOS image sensor and a field-programmable gate array converts an image into spike signals, and the memristor array is used to adjust the synaptic weights between the input and output neurons according to the learning rule. A leaky integrate-and-fire model is used for the output neuron that is built together with the image sensor on a single chip. The system has 30 input neurons that are interconnected to 10 output neurons through 300 memristors. Each input neuron corresponding to a pixel in a 5 x 6 pixel image generates voltage pulses according to the pixel value. The voltage pulses are then weighted and integrated by the memristors and the output neurons, respectively, to be compared with a certain threshold voltage above which an output neuron fires. The system has been successfully demonstrated by training and recognizing number images from 0 to 9.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
ISSN
0278-0046
DOI
10.1109/TIE.2014.2356439
URI
https://scholar.gist.ac.kr/handle/local/14782
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.