OAK

Controlling the Temperature and Speed of the Phase Transition of VO2 Microcrystals

Metadata Downloads
Abstract
We investigated the control of two important parameters of vanadium dioxide (VO2) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ∼70 to ∼1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition by using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 102 to 1.7 × 104 μm/s as the width decreases from ∼50 to ∼2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO2, the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO2 microcrystals. Our findings not only enhance the understanding of VO2 intrinsic properties but also contribute to the development of innovative electronic devices. © 2015 American Chemical Society.
Author(s)
Yoon, J.Kim, H.Chen, X.Tamura, N.Mun, Bongjin SimonPark, C.Ju, H.
Issued Date
2016-01
Type
Article
DOI
10.1021/acsami.5b11144
URI
https://scholar.gist.ac.kr/handle/local/14418
Publisher
AMER CHEMICAL SOC
Citation
ACS Applied Materials & Interfaces, v.8, no.3, pp.2280 - 2286
ISSN
1944-8244
Appears in Collections:
Department of Physics and Photon Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.