OAK

An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation

Metadata Downloads
Abstract
Surface engineering of TiO2 is faced with the challenge of high solar-to-hydrogen conversion efficiency. Recently, surface-disordered TiO2, referred to as black TiO2, which can absorb both visible and near-infrared solar light, has triggered an explosion of interest in many important applications. Unfortunately, the mechanism underlying the improved photocatalytic effect from an amorphous surface layer remains unclear and seems to contradict conventional wisdom. Here, we demonstrate selectively disorder engineered Degussa P-25 TiO2 nanoparticles using simple room-temperature solution processing, which maintain the unique three-phase interfaces composed of ordered white-anatase and disordered black-rutile with open structures for easy electrolyte access. The strong reducing agent in a superbase, which consists of lithium in ethylenediamine (Li-EDA), can disorder only the white-rutile phase of P-25, leaving behind blue coloured TiO2 nanoparticles. The order/disorder/water junction created by the blue P-25 can not only efficiently internally separate electrons/holes through type-II bandgap alignment but can also induce a strong hydrogen (H2) evolution surface reaction in the sacrificial agent containing electrolyte. As a result, the blue P-25 exhibited outstanding H2 production rates of 13.89 mmol h-1 g-1 using 0.5 wt% Pt (co-catalyst) and 3.46 mmol h-1 g-1 without using any co-catalyst. © 2016 The Royal Society of Chemistry.
Author(s)
Zhang, K.Wang, L.Kim, J.K.Ma, M.Veerappan, G.Lee, Chang-LyoulKong, K.-J.Lee, H.Park, J.H.
Issued Date
2016-02
Type
Article
DOI
10.1039/c5ee03100a
URI
https://scholar.gist.ac.kr/handle/local/14358
Publisher
Royal Society of Chemistry
Citation
Energy and Environmental Sciences, v.9, no.2, pp.499 - 503
ISSN
1754-5692
Appears in Collections:
ETC > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.