OAK

Tuning magnetism via selective injection into ice-like clathrate hydrates

Metadata Downloads
Abstract
Clathrate hydrates exhibit unique intermolecular interactions between host-guest and guest-guest molecules because they have 3-dimensional superstructures consisting of the sublattices created by hydrogen-bonded water molecules that form cage-like frameworks in which guest molecules can be incorporated. Lattice engineering or molecular engineering using a selective injection of specific guest molecules into these sublattices can be exploited to tune the physicochemical properties of guest molecules or to create new functional materials. Here, we report distinctive intermolecular behavior of oxygen molecules that are selectively inserted in a structure-II type superstructure consisting of a tetrahedral sublattice by the small 512 water cages and a diamond-like sublattice by the large 51264 cages. Pure O2 clathrate hydrate and binary THF+O2 clathrate hydrate were synthesized, and their magnetism and heat capacity were measured at low temperature conditions. These results strongly suggest that the magnetic property of the oxygen molecule is largely varied with the formation of a 3-dimensional superstructure by the injection of O2 into the water frameworks. © 2015, Korean Institute of Chemical Engineers, Seoul, Korea.
Author(s)
Park, YoungjuneKoh, Dong-YeunDho, JoonghoeYeon, Sun-HwaLee, Huen
Issued Date
2016-03
Type
Article
DOI
10.1007/s11814-015-0291-8
URI
https://scholar.gist.ac.kr/handle/local/14305
Publisher
Springer New York LLC
Citation
KOREAN JOURNAL OF CHEMICAL ENGINEERING, v.33, no.5, pp.1706 - 1711
ISSN
0256-1115
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.