OAK

Adhesion potential of bacteria retrieved from intake seawater and membrane biofilms on full-scale reverse osmosis desalination process

Metadata Downloads
Abstract
Micro-organisms were isolated from intake seawater and reverse osmosis (RO) membrane biofilms collected from a full-scale membrane-based desalination process. The results from a culture-dependent approach using 12 media were combined with the microbial community structure on fouled RO membranes as analyzed by a 16S rRNA clone library construction in our previous study. This was followed by selection of 11 target bacteria for further analysis, which were suspected to be responsible for biofilm formation on membrane surfaces. The adhesion of potential biofoulants differing in surface hydrophobicity and charge was examined. Cell wall hydrophobicity was measured as the contact angle of a lawn of bacteria, and by adhesion to hexadecane. The cell surface charge was investigated by measuring electrophoretic mobility. The data obtained from these methodologies were compared. According to the cell surface charge measurements, Pseudomonas aeruginosa, Acinetobacter venetianus, Cellvibrio mixtus subsp. Mixtus, Bacillus sp. Eur1 9.5, and Escherichia coli K12 could mediate initial adhesion to negatively charged RO membranes through electrostatic attraction. Limnobacter sp. KNF002, A. venetianus, and Simiduia agarivorans showed higher affinity to hexadecane than other bacterial strains tested, and Bacillus sp. Eur1 9.5, C. mixtus subsp. Mixtus, and P. aeruginosa were determined to have greater hydrophobic interactions with hydrophobic RO membranes. © 2016 Balaban Desalination Publications. All rights reserved.
Author(s)
Chun, YoungpilChoi, DonggeonKim, DaeheeLovitt, Robert W.Chang, In Seop
Issued Date
2016-11
Type
Article
DOI
10.1080/19443994.2016.1189706
URI
https://scholar.gist.ac.kr/handle/local/14034
Publisher
Taylor and Francis Inc.
Citation
Desalination and Water Treatment, v.57, no.55, pp.26629 - 26640
ISSN
1944-3994
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.